
Jean-Christophe Andrau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7278188/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The control of transcriptional memory by stable mitotic bookmarking. Nature Communications, 2022, 13, 1176.	5.8	26
2	Notch-dependent and -independent functions of transcription factor RBPJ. Nucleic Acids Research, 2022, 50, 7925-7937.	6.5	7
3	Analyses of Promoter, Enhancer, and Nucleosome Organization in Mammalian Cells by MNase-Seq. Methods in Molecular Biology, 2021, 2351, 93-104.	0.4	5
4	Fra-1 regulates its target genes via binding to remote enhancers without exerting major control on chromatin architecture in triple negative breast cancers. Nucleic Acids Research, 2021, 49, 2488-2508.	6.5	15
5	Stochastic pausing at latent HIV-1 promoters generates transcriptional bursting. Nature Communications, 2021, 12, 4503.	5.8	38
6	Immunopathological manifestations in Kabuki syndrome: a registry study of 177 individuals. Genetics in Medicine, 2020, 22, 181-188.	1.1	30
7	Alternative Enhancer Usage and Targeted Polycomb Marking Hallmark Promoter Choice during T Cell Differentiation. Cell Reports, 2020, 32, 108048.	2.9	13
8	Integration of high-throughput reporter assays identify a critical enhancer of the Ikzf1 gene. PLoS ONE, 2020, 15, e0233191.	1.1	4
9	Evaluation of DNA Methylation Episignatures for Diagnosis and Phenotype Correlations in 42 Mendelian Neurodevelopmental Disorders. American Journal of Human Genetics, 2020, 106, 356-370.	2.6	171
10	The Landscape of L1 Retrotransposons in the Human Genome Is Shaped by Pre-insertion Sequence Biases and Post-insertion Selection. Molecular Cell, 2019, 74, 555-570.e7.	4.5	107
11	Critical role for TRIM28 and HP1β/γ in the epigenetic control of T cell metabolic reprograming and effector differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25839-25849.	3.3	23
12	MIR sequences recruit zinc finger protein ZNF768 to expressed genes. Nucleic Acids Research, 2019, 47, 700-715.	6.5	14
13	Regulation of the positive transcriptional effect of PLZF through a non-canonical EZH2 activity. Nucleic Acids Research, 2018, 46, 3339-3350.	6.5	26
14	Tyrosine-1 of RNA Polymerase II CTD Controls Global Termination of Gene Transcription in Mammals. Molecular Cell, 2018, 69, 48-61.e6.	4.5	66
15	Two possible modes of pioneering associated with combinations of H2A.Z and p300/CBP at nucleosome-occupied enhancers. Transcription, 2017, 8, 179-184.	1.7	7
16	ARS2 is a general suppressor of pervasive transcription. Nucleic Acids Research, 2017, 45, 10229-10241.	6.5	53
17	A threshold level of NFATc1 activity facilitates thymocyte differentiation and opposes notch-driven leukaemia development. Nature Communications, 2016, 7, 11841.	5.8	23
18	Pasha: a versatile R package for piling chromatin HTS data. Bioinformatics, 2016, 32, 2528-2530.	1.8	21

#	Article	IF	CITATIONS
19	Dynamic recruitment of Ets1 to both nucleosome-occupied and -depleted enhancer regions mediates a transcriptional program switch during early T-cell differentiation. Nucleic Acids Research, 2016, 44, 3567-3585.	6.5	39
20	The chromatin environment shapes DNA replication origin organization and defines origin classes. Genome Research, 2015, 25, 1873-1885.	2.4	149
21	Site- and allele-specific polycomb dysregulation in T-cell leukaemia. Nature Communications, 2015, 6, 6094.	5.8	47
22	High-throughput and quantitative assessment of enhancer activity in mammals by CapStarr-seq. Nature Communications, 2015, 6, 6905.	5.8	138
23	Transcription-Dependent Generation of a Specialized Chromatin Structure at the TCR 2 Locus. Journal of Immunology, 2015, 194, 3432-3443.	0.4	10
24	Site-specific methylation and acetylation of lysine residues in the C-terminal domain (CTD) of RNA polymerase II. Transcription, 2015, 6, 91-101.	1.7	22
25	Architecture and Expression of the Nfatc1 Gene in Lymphocytes. Frontiers in Immunology, 2014, 5, 21.	2.2	19
26	Tyrosine phosphorylation of RNA polymerase II CTD is associated with antisense promoter transcription and active enhancers in mammalian cells. ELife, 2014, 3, e02105.	2.8	76
27	Divergent transcription is associated with promoters of transcriptional regulators. BMC Genomics, 2013, 14, 914.	1.2	95
28	Editorial for "Diversity of the non-coding transcriptomes revealed by RNA-seq technologies― Methods, 2013, 63, 1-2.	1.9	2
29	An update on recent methods applied for deciphering the diversity of the noncoding RNA genome structure and function. Methods, 2013, 63, 3-17.	1.9	11
30	Noncoding Transcription at Enhancers: General Principles and Functional Models. Annual Review of Genetics, 2012, 46, 1-19.	3.2	348
31	CpG islands and GC content dictate nucleosome depletion in a transcription-independent manner at mammalian promoters. Genome Research, 2012, 22, 2399-2408.	2.4	197
32	Argonaute proteins couple chromatin silencing to alternative splicing. Nature Structural and Molecular Biology, 2012, 19, 998-1004.	3.6	245
33	Threonine-4 of mammalian RNA polymerase II CTD is targeted by Polo-like kinase 3 and required for transcriptional elongation. EMBO Journal, 2012, 31, 2784-2797.	3.5	123
34	Splicing enhances recruitment of methyltransferase HYPB/Setd2 and methylation of histone H3 Lys36. Nature Structural and Molecular Biology, 2011, 18, 977-983.	3.6	204
35	H3K4 tri-methylation provides an epigenetic signature of active enhancers. EMBO Journal, 2011, 30, 4198-4210.	3.5	265
36	Transcription initiation platforms and GTF recruitment at tissue-specific enhancers and promoters. Nature Structural and Molecular Biology, 2011, 18, 956-963.	3.6	296

JEAN-CHRISTOPHE ANDRAU

#	Article	IF	CITATIONS
37	Initiating RNA Polymerase II and TIPs as hallmarks of enhancer activity and tissue-specificity. Transcription, 2011, 2, 263-268.	1.7	33
38	The Ccr4–Not Deadenylase Subunits CNOT7 and CNOT8 Have Overlapping Roles and Modulate Cell Proliferation. Molecular Biology of the Cell, 2009, 20, 3840-3850.	0.9	92
39	CoCAS: a ChIP-on-chip analysis suite. Bioinformatics, 2009, 25, 954-955.	1.8	25
40	Genome-wide RNA polymerase II: not genes only!. Trends in Biochemical Sciences, 2008, 33, 265-273.	3.7	63
41	Genome-Wide Location of the Coactivator Mediator: Binding without Activation and Transient Cdk8 Interaction on DNA. Molecular Cell, 2006, 22, 179-192.	4.5	138
42	Genome-Wide Analyses Reveal RNA Polymerase II Located Upstream of Genes Poised for Rapid Response upon S. cerevisiae Stationary Phase Exit. Molecular Cell, 2005, 18, 171-183.	4.5	192
43	Mot1p is essential for TBP recruitment to selected promoters during in vivo gene activation. EMBO Journal, 2002, 21, 5173-5183.	3.5	55
44	B″-associated factor(s) involved in RNA polymerase III preinitiation complex formation and start-site selection. FEBS Journal, 2001, 268, 5167-5175.	0.2	12
45	Mutagenesis of yeast TFIIIB70 reveals C-terminal residues critical for interaction with TBP and C34 1 1Edited by M. Yaniv. Journal of Molecular Biology, 1999, 288, 511-520.	2.0	49