Ki Joo Pahk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7278149/publications.pdf

Version: 2024-02-01

840119 752256 21 433 11 20 citations h-index g-index papers 21 21 21 338 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	A review of low-intensity focused ultrasound for neuromodulation. Biomedical Engineering Letters, 2017, 7, 135-142.	2.1	98
2	Boiling Histotripsy-induced Partial Mechanical Ablation Modulates Tumour Microenvironment by Promoting Immunogenic Cell Death of Cancers. Scientific Reports, 2019, 9, 9050.	1.6	52
3	Modulation of Cerebellar Cortical Plasticity Using Low-Intensity Focused Ultrasound for Poststroke Sensorimotor Function Recovery. Neurorehabilitation and Neural Repair, 2018, 32, 777-787.	1.4	35
4	Mechanical damage induced by the appearance of rectified bubble growth in a viscoelastic medium during boiling histotripsy exposure. Ultrasonics Sonochemistry, 2019, 53, 164-177.	3.8	34
5	Numerical and Experimental Study of Mechanisms Involved in Boiling Histotripsy. Ultrasound in Medicine and Biology, 2017, 43, 2848-2861.	0.7	33
6	A Novel Approach to Ultrasound-Mediated Tissue Decellularization and Intra-Hepatic Cell Delivery in Rats. Ultrasound in Medicine and Biology, 2016, 42, 1958-1967.	0.7	27
7	Bubble dynamics in boiling histotripsy. Ultrasound in Medicine and Biology, 2018, 44, 2673-2696.	0.7	23
8	The effects of ultrasound pressure and temperature fields in millisecond bubble nucleation. Ultrasonics Sonochemistry, 2019, 55, 262-272.	3.8	20
9	The interaction of shockwaves with a vapour bubble in boiling histotripsy: The shock scattering effect. Ultrasonics Sonochemistry, 2021, 70, 105312.	3.8	18
10	Method to optimize the placement of a single-element transducer for transcranial focused ultrasound. Computer Methods and Programs in Biomedicine, 2019, 179, 104982.	2.6	16
11	Ultrasonic Histotripsy for Tissue Therapy. Journal of Physics: Conference Series, 2015, 581, 012001.	0.3	13
12	Investigation of the Potential Immunological Effects of Boiling Histotripsy for Cancer Treatment. Advanced Therapeutics, 2020, 3, 1900214.	1.6	13
13	A local difference in blood–brain barrier permeability in the caudate putamen and thalamus of a rat brain induced by focused ultrasound. Scientific Reports, 2020, 10, 19286.	1.6	11
14	Control of the dynamics of a boiling vapour bubble using pressure-modulated high intensity focused ultrasound without the shock scattering effect: A first proof-of-concept study. Ultrasonics Sonochemistry, 2021, 77, 105699.	3.8	9
15	Mechanisms of nuclei growth in ultrasound bubble nucleation. Ultrasonics Sonochemistry, 2022, 88, 106091.	3.8	9
16	Development of a subject-specific guide system for Low-Intensity Focused Ultrasound (LIFU) brain stimulation. Computer Methods and Programs in Biomedicine, 2019, 176, 105-110.	2.6	6
17	The effects of the size of a boiling bubble on lesion production in boiling histotripsy. Journal of Physics: Conference Series, 2019, 1184, 012007.	0.3	5
18	Simultaneous measurements of acoustic emission and sonochemical luminescence for monitoring ultrasonic cavitation. Journal of the Acoustical Society of America, 2021, 149, 4477-4483.	0.5	5

#	Article	IF	CITATIONS
19	Modeling the Physics of Bubble Nucleation in Histotripsy. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 2871-2883.	1.7	3
20	A novel numerical approach to stimulation of a specific brain region using transcranial focused ultrasound., 2018, 2018, 3697-3700.		2
21	Boiling histotripsy-induced mechanical ablation modulates tumour microenvironment by promoting immunogenic cell death of cancers. Annals of Oncology, 2019, 30, v20-v21.	0.6	1