Daria K Tuchina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7278014/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Measurement of tissue optical properties in the context of tissue optical clearing. Journal of Biomedical Optics, 2018, 23, 1.	2.6	90
2	<i>Ex vivo</i> optical measurements of glucose diffusion kinetics in native and diabetic mouse skin. Journal of Biophotonics, 2015, 8, 332-346.	2.3	44
3	Skin optical clearing potential of disaccharides. Journal of Biomedical Optics, 2016, 21, 081207.	2.6	42
4	Optical properties of brain tissues at the different stages of glioma development in rats: pilot study. Biomedical Optics Express, 2019, 10, 5182.	2.9	42
5	THz monitoring of the dehydration of biological tissues affected by hyperosmotic agents. Physics of Wave Phenomena, 2014, 22, 169-176.	1.1	29
6	Optical clearing of skin tissue ex vivo with polyethylene glycol. Optics and Spectroscopy (English) Tj ETQq0 0 0	rgBT /Over 0.6	lock 10 Tf 50
7	Optimal hyperosmotic agents for tissue immersion optical clearing in terahertz biophotonics. Journal of Biophotonics, 2020, 13, e202000297.	2.3	24
8	Magnetic resonance contrast agents in optical clearing: Prospects for multimodal tissue imaging. Journal of Biophotonics, 2020, 13, e201960249.	2.3	21
9	Study of glycerol diffusion in skin and myocardium ex vivo under the conditions of developing alloxan-induced diabetes. Journal of Biomedical Photonics and Engineering, 2017, 3, 020302.	0.7	18
10	Ex vivo investigation of glycerol diffusion in skin tissue. Journal of Biomedical Photonics and Engineering, 2016, 2, 010303-1-010303-5.	0.7	14
11	Kinetics of Rat Skin Optical Clearing at Topical Application of 40%Glucose: <italic>Ex Vivo </italic> and <italic>In Vivo</italic> Studies. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-8.	2.9	10
12	Quantification of glucose and glycerol diffusion in myocardium. Journal of Innovative Optical Health Sciences, 2015, 08, 1541006.	1.0	8
13	Optical and structural properties of biological tissues under diabetes mellitus. Journal of Biomedical Photonics and Engineering, 2018, 4, 020201.	0.7	7
14	Laser speckle contrast imaging of cerebral blood flow of newborn mice at optical clearing. , 2017, , .		5
15	MR and fluorescence imaging of gadobutrolâ€induced optical clearing of red fluorescent protein signal in an in vivo cancer model. NMR in Biomedicine, 2022, 35, e4708.	2.8	5
16	Prospects for multimodal visualisation of biological tissues using fluorescence imaging. Quantum Electronics, 2021, 51, 104-117.	1.0	4
17	Terahertz spectroscopy of immersion optical clearing agents: DMSO, PG, EG, PEG. , 2018, , .		4
18	Immersion optical clearing of adipose tissue in rats: ex vivo and in vivo studies. Journal of Biophotonics, 2022, 15, e202100393.	2.3	4

Daria K Tuchina

#	ARTICLE	IF	CITATIONS
19	In-vitro terahertz spectroscopy of rat skin under the action of dehydrating agents. Proceedings of SPIE, 2014, , .	0.8	3
20	Use of Terahertz Spectroscopy for in vivo Studies of Lymphedema Development Dynamics. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2019, 126, 523-529.	0.6	3
21	Medical diagnosis using NIR and THz tissue imaging and machine learning methods. , 2019, , .		3
22	A comparison of terahertz optical constants and diffusion coefficients of tissue immersion optical clearing agents. , 2019, , .		3
23	Towards registration of optical and MR signal changes in subcutaneous tumor volume in vivo after optical skin clearing. , 2020, , .		2
24	Controlling of upconversion nanoparticle luminescence at heating and optical clearing of adipose tissue. Proceedings of SPIE, 2017, , .	0.8	0
25	Optical clearing and multimodality fluorescence and magnetic resonance imaging in cancer models. , 2021, , .		0
26	Application of high molecular PEG for optical clearing of skin. , 2021, , .		0
27	Ultrasonic modes to improve the optical clearing of the skin ex vivo. , 2021, , .		0
28	Exogenous agent diffusivity in tissues as a biomarker of diabetes mellitus pathology. , 2019, , .		0
29	Differential diagnostics of paraffin-embedded tissues by IR-THz spectroscopy and machine learning. , 2020, , .		0
30	Pilot study of glycerol diffusion in ex vivo skin: a comparison of alloxan and streptozotocin diabetes models. , 2020, , .		0