Xuefei Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/727753/publications.pdf

Version: 2024-02-01

101543 128289 3,966 88 36 60 h-index citations g-index papers 89 89 89 3732 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Perfluorooctanoic Acid Degradation Using UV–Persulfate Process: Modeling of the Degradation and Chlorate Formation. Environmental Science & Eamp; Technology, 2016, 50, 772-781.	10.0	294
2	Biodegradation of Polystyrene by Dark (<i>Tenebrio obscurus</i>) and Yellow (<i>Tenebrio) Tj ETQq0 0 0 rgBT /Ov53, 5256-5265.</i>	verlock 10 10.0	Tf 50 707 To 201
3	Effect of inoculum sources on the anaerobic digestion of rice straw. Bioresource Technology, 2014, 158, 149-155.	9.6	178
4	The effect of bacterial contamination on the heterotrophic cultivation of Chlorella pyrenoidosa in wastewater from the production of soybean products. Water Research, 2012, 46, 5509-5516.	11.3	149
5	Biodegradation of Polyvinyl Chloride (PVC) in Tenebrio molitor (Coleoptera: Tenebrionidae) larvae. Environment International, 2020, 145, 106106.	10.0	129
6	Degradation of organic compounds by peracetic acid activated with Co3O4: A novel advanced oxidation process and organic radical contribution. Chemical Engineering Journal, 2020, 394, 124938.	12.7	127
7	Chlorella pyrenoidosa cultivation using anaerobic digested starch processing wastewater in an airlift circulation photobioreactor. Bioresource Technology, 2014, 170, 538-548.	9.6	120
8	Complexation Enhances Cu(II)-Activated Peroxydisulfate: A Novel Activation Mechanism and Cu(III) Contribution. Environmental Science & Environmental S	10.0	119
9	Nutrients removal and lipids production by Chlorella pyrenoidosa cultivation using anaerobic digested starch wastewater and alcohol wastewater. Bioresource Technology, 2015, 181, 54-61.	9.6	116
10	Effect of Ca(OH)2 pretreatment on extruded rice straw anaerobic digestion. Bioresource Technology, 2015, 196, 116-122.	9.6	105
11	Carbamazepine degradation by heterogeneous activation of peroxymonosulfate with lanthanum cobaltite perovskite: Performance, mechanism and toxicity. Journal of Environmental Sciences, 2020, 91, 10-21.	6.1	82
12	Sustainability and carbon neutrality trends for microalgae-based wastewater treatment: A review. Environmental Research, 2022, 209, 112860.	7.5	81
13	Selective Chemical Conversion of Sugars in Aqueous Solutions without Alkali to Lactic Acid Over a Zn-Sn-Beta Lewis Acid-Base Catalyst. Scientific Reports, 2016, 6, 26713.	3.3	80
14	Anaerobic conversion of the hydrothermal liquefaction aqueous phase: fate of organics and intensification with granule activated carbon/ozone pretreatment. Green Chemistry, 2019, 21, 1305-1318.	9.0	79
15	Oxidation of cefalexin by thermally activated persulfate: Kinetics, products, and antibacterial activity change. Journal of Hazardous Materials, 2018, 354, 153-160.	12.4	74
16	Highly efficient activation of peracetic acid by nano-CuO for carbamazepine degradation in wastewater: The significant role of H2O2 and evidence of acetylperoxy radical contribution. Water Research, 2022, 216, 118322.	11.3	69
17	Activation of peracetic acid with cobalt anchored on 2D sandwich-like MXenes (Co@MXenes) for organic contaminant degradation: High efficiency and contribution of acetylperoxyl radicals. Applied Catalysis B: Environmental, 2021, 297, 120475.	20.2	68
18	Extraction procedure optimization and the characteristics of dissolved extracellular organic matter (dEOM) and bound extracellular organic matter (bEOM) from Chlorella pyrenoidosa. Colloids and Surfaces B: Biointerfaces, 2015, 125, 238-246.	5.0	66

#	Article	IF	CITATIONS
19	Integrated anaerobic digestion and algae cultivation for energy recovery and nutrient supply from post-hydrothermal liquefaction wastewater. Bioresource Technology, 2018, 266, 349-356.	9.6	62
20	Selective Electrocatalytic Reduction of Nitrate to Ammonia with Nickel Phosphide. ACS Applied Materials & Samp; Interfaces, 2021, 13, 30458-30467.	8.0	62
21	Amorphous nickel phosphide as a noble metal-free cathode for electrochemical dechlorination. Water Research, 2019, 165, 114930.	11.3	59
22	Strategic enhancement of algal biomass, nutrient uptake and lipid through statistical optimization of nutrient supplementation in coupling Scenedesmus obliquus-like microalgae cultivation and municipal wastewater treatment. Bioresource Technology, 2014, 171, 71-79.	9.6	57
23	The filtration and fouling performance of membranes with different pore sizes in algae harvesting. Science of the Total Environment, 2017, 587-588, 87-93.	8.0	57
24	Biodegradation of polylactic acid by yellow mealworms (larvae of Tenebrio molitor) via resource recovery: A sustainable approach for waste management. Journal of Hazardous Materials, 2021, 416, 125803.	12.4	57
25	Cu(II)–Catalyzed Transformation of Benzylpenicillin Revisited: The Overlooked Oxidation. Environmental Science & Technology, 2015, 49, 4218-4225.	10.0	56
26	Microalgae harvesting by an axial vibration membrane: The mechanism of mitigating membrane fouling. Journal of Membrane Science, 2016, 508, 127-135.	8.2	55
27	Increasing the vibration frequency to mitigate reversible and irreversible membrane fouling using an axial vibration membrane in microalgae harvesting. Journal of Membrane Science, 2017, 529, 215-223.	8.2	55
28	Effect of hydrothermal pretreatment on Miscanthus anaerobic digestion. Bioresource Technology, 2017, 224, 721-726.	9.6	52
29	Effect of temperature on extracellular organic matter (EOM) of Chlorella pyrenoidosa and effect of EOM on irreversible membrane fouling. Colloids and Surfaces B: Biointerfaces, 2015, 136, 431-439.	5.0	51
30	Intracellular versus extracellular accumulation of Hexavalent chromium reduction products by Geobacter sulfurreducens PCA. Environmental Pollution, 2018, 240, 485-492.	7.5	50
31	Removal of ofloxacin with biofuel production by oleaginous microalgae Scenedesmus obliquus. Bioresource Technology, 2020, 315, 123738.	9.6	48
32	Selective oxidation of tetracyclines by peroxymonosulfate in livestock wastewater: Kinetics and non-radical mechanism. Journal of Hazardous Materials, 2020, 386, 121656.	12.4	42
33	Dewatering of Chlorella pyrenoidosa using diatomite dynamic membrane: Filtration performance, membrane fouling and cake behavior. Colloids and Surfaces B: Biointerfaces, 2014, 113, 458-466.	5.0	41
34	The impact of temperature on membrane fouling in algae harvesting. Algal Research, 2016, 16, 458-464.	4.6	40
35	Characteristics of dynamic membrane filtration: structure, operation mechanisms, and cost analysis. Science Bulletin, 2014, 59, 247-260.	1.7	38
36	Comparison of axial vibration membrane and submerged aeration membrane in microalgae harvesting. Bioresource Technology, 2016, 208, 178-183.	9.6	38

#	Article	IF	Citations
37	Pollutant removal mechanisms in a bio-diatomite dynamic membrane reactor for micro-polluted surface water purification. Desalination, 2012, 293, 38-45.	8.2	37
38	Bio-enhanced powder-activated carbon dynamic membrane reactor for municipal wastewater treatment. Journal of Membrane Science, 2013, 433, 126-134.	8.2	37
39	Bioremediation of Cr (VI) contaminated groundwater by Geobacter sulfurreducens: Environmental factors and electron transfer flow studies. Chemosphere, 2019, 221, 793-801.	8.2	37
40	Using axial vibration membrane process to mitigate membrane fouling and reject extracellular organic matter in microalgae harvesting. Journal of Membrane Science, 2016, 517, 30-38.	8.2	35
41	Impact of transmembrane pressure (TMP) on membrane fouling in microalgae harvesting with a uniform shearing vibration membrane system. Algal Research, 2018, 35, 613-623.	4.6	35
42	A uniform shearing vibration membrane system reducing membrane fouling in algae harvesting. Journal of Cleaner Production, 2018, 196, 1026-1033.	9.3	35
43	Modeling and prediction for the acute toxicity of pesticide mixtures to the freshwater luminescent bacterium Vibrio qinghaiensis spQ67. Journal of Environmental Sciences, 2010, 22, 433-440.	6.1	33
44	Solvent isotope effect and mechanism for the production of hydrogen and lactic acid from glycerol under hydrothermal alkaline conditions. Green Chemistry, 2012, 14, 3285.	9.0	33
45	Unexpected Role of Nitrite in Promoting Transformation of Sulfonamide Antibiotics by Peracetic Acid: Reactive Nitrogen Species Contribution and Harmful Disinfection Byproduct Formation Potential. Environmental Science & Technology, 2022, 56, 1300-1309.	10.0	33
46	Activation of Peracetic Acid with Lanthanum Cobaltite Perovskite for Sulfamethoxazole Degradation under a Neutral pH: The Contribution of Organic Radicals. Molecules, 2020, 25, 2725.	3.8	32
47	Multifunctional Edge-Activated Carbon Nitride Nanosheet-Wrapped Polydimethylsiloxane Sponge Skeleton for Selective Oil Absorption and Photocatalysis. ACS Omega, 2020, 5, 4181-4190.	3.5	30
48	Hydrogels for the removal of the methylene blue dye from wastewater: a review. Environmental Chemistry Letters, 2022, 20, 2665-2685.	16.2	30
49	The comparison between vibration and aeration on the membrane performance in algae harvesting. Journal of Membrane Science, 2019, 592, 117390.	8.2	29
50	Mn3O4-g-C3N4 composite to activate peroxymonosulfate for organic pollutants degradation: Electron transfer and structure-dependence. Journal of Hazardous Materials, 2022, 434, 128818.	12.4	28
51	Interfacial thermodynamics and kinetics of sorption of diclofenac on prepared high performance flower-like MoS2. Journal of Colloid and Interface Science, 2016, 481, 210-219.	9.4	27
52	Fabrication of a Novel SnO2 Photonic Crystal Sensitized by CdS Quantum Dots and Its Enhanced Photocatalysis under Visible Light Irradiation. Electrochimica Acta, 2014, 121, 352-360.	5.2	26
53	Continuous treatment of hydrothermal liquefaction wastewater in an anaerobic biofilm reactor: Potential role of granular activated carbon. Journal of Cleaner Production, 2020, 276, 122836.	9.3	26
54	Selective Hydrogenolysis of Erythritol over Irâ^'ReO _{<i>x</i>} /Rutileâ€TiO ₂ Catalyst. ChemSusChem, 2021, 14, 642-654.	6.8	26

#	Article	IF	CITATIONS
55	Enhancing anaerobic digestion of pharmaceutical industries wastewater with the composite addition of zero valent iron (ZVI) and granular activated carbon (GAC). Bioresource Technology, 2022, 346, 126566.	9.6	24
56	Improve the biodegradability of post-hydrothermal liquefaction wastewater with ozone: conversion of phenols and N-heterocyclic compounds. Water Science and Technology, 2018, 2017, 248-255.	2.5	23
57	Rapid oxidation of histamine H2-receptor antagonists by peroxymonosulfate during water treatment: Kinetics, products, and toxicity evaluation. Water Research, 2020, 185, 116278.	11.3	23
58	Efficient activation of peroxymonosulfate by copper supported on polyurethane foam for contaminant degradation: Synergistic effect and mechanism. Chemical Engineering Journal, 2022, 427, 131741.	12.7	23
59	Pretreatment of micro-polluted surface water with a biologically enhanced PAC–diatomite dynamic membrane reactor to produce drinking water. Desalination and Water Treatment, 2012, 40, 84-91.	1.0	19
60	Partitioning of Fluoroquinolones on Wastewater Sludge. Clean - Soil, Air, Water, 2013, 41, 820-827.	1.1	19
61	Multi-dimensional in-depth dissection the algae-related membrane fouling in heterotrophic microalgae harvesting: Deposition dynamics, algae cake formation, and interaction force analysis. Journal of Membrane Science, 2021, 635, 119501.	8.2	17
62	Effect of temperature on the conversion ratio of glucose to Chlorella pyrenoidosa cells: Reducing the cost of cultivation. Algal Research, 2015, 12, 431-435.	4.6	16
63	Synergistic activation of peroxydisulfate with magnetite and copper ion at neutral condition. Water Research, 2020, 186, 116371.	11.3	16
64	Simultaneous molybdate (Mo(VI)) recovery and hazardous ions immobilization via nanoscale zerovalent iron. Journal of Hazardous Materials, 2018, 344, 698-706.	12.4	15
65	Impacts of molybdate and ferric chloride on biohythane production through two-stage anaerobic digestion of sulfate-rich hydrolyzed tofu processing residue. Bioresource Technology, 2022, 355, 127239.	9.6	15
66	Interactions between peracetic acid and TiO2 nanoparticle in wastewater disinfection: Mechanisms and implications. Chemical Engineering Journal, 2021, 412, 128703.	12.7	14
67	Effects of hydrothermal pretreatment and bamboo hydrochar addition on anaerobic digestion of tofu residue for biogas production. Bioresource Technology, 2021, 336, 125279.	9.6	14
68	Evaluation of the performance of different membrane materials for microalgae cultivation on attached biofilm reactors. RSC Advances, 2022, 12, 1451-1459.	3.6	14
69	Gravity filtration performances of the bio-diatomite dynamic membrane reactor for slightly polluted surface water purification. Water Science and Technology, 2012, 66, 1139-1146.	2.5	11
70	Characterization of dissolved organic matter in a dynamic membrane bioreactor for wastewater treatment. Science Bulletin, 2013, 58, 1717-1724.	1.7	10
71	Membrane technologies in toilet urine treatment for toilet urine resource utilization: a review. RSC Advances, 2021, 11, 35525-35535.	3.6	10
72	Performance enhancement and fouling alleviation by controlling transmembrane pressure in a vibration membrane system for algae separation. Journal of Membrane Science, 2022, 647, 120252.	8.2	10

#	Article	IF	CITATIONS
73	Transport and partitioning of metals in river networks of a plain area with sedimentary resuspension and implications for downstream lakes. Environmental Pollution, 2022, 294, 118668.	7.5	9
74	Performance and properties of coking nanofiltration concentrate treatment and membrane fouling mitigation by an Fe(<scp>ii</scp>)/persulfate-coagulation-ultrafiltration process. RSC Advances, 2019, 9, 15277-15287.	3.6	7
75	The interaction between microalgae and membrane surface in filtration by uniform shearing vibration membrane. Algal Research, 2020, 50, 102012.	4.6	7
76	Application of a Novel Semiconductor Catalyst, CT, in Degradation of Aromatic Pollutants in Wastewater: Phenol and Catechol. Journal of Nanomaterials, 2014, 2014, 1-10.	2.7	4
77	CFD Study on the Ventilation Effectiveness in a Public Toilet under Three Ventilation Methods. Energies, 2021, 14, 8379.	3.1	4
78	Occurrence and Removal of Fluoroquinolone Antibiotics in a Sewage Treatment Plant in Shanghai, China. , 2009, , .		3
79	Dynamics and Numerical Simulation of Contaminant Diffusion for a Non-Flushing Ecological Toilet. Energies, 2021, 14, 7570.	3.1	3
80	Novel Three-Dimensional Electrochemical Reactor with P and N-Codoped Activated Carbon for Water Decontamination: High Efficiency and Contribution of Singlet Oxygen. ACS ES&T Water, 2022, 2, 721-729.	4.6	3
81	The Health Risk Assessment of Heavy Metals in the Circumstance of Dust in Shanghai Urban Parks. , 2009, , .		1
82	Optimization of Solid Phase Extraction (SPE) for the Determination of Synthetic Musks in Water by Gas Chromatography-Mass Spectrometry (GC-MS)., 2009,,.		1
83	Highly Efficient, Ultra‣ow Energy Consumption Process for Phenol Wastewater Treatment with Ultra‣ow Carbon Emission. Clean - Soil, Air, Water, 2013, 41, 865-871.	1.1	1
84	Phenol Removal by a Novel Non-Photo-Dependent Semiconductor Catalyst in a Pilot-Scaled Study: Effects of Initial Phenol Concentration, Light, and Catalyst Loading. Journal of Nanomaterials, 2014, 2014, 1-8.	2.7	1
85	Construction and application of the Synechocystis sp. PCC6803-ftnA in microbial contamination control in a coupled cultivation and wastewater treatment. Journal of Environmental Sciences, 2016, 46, 174-181.	6.1	1
86	Biological Reduction of Ferrihydrite with Silica Addition: Rates and Controlling Mechanisms. ACS Earth and Space Chemistry, 2021, 5, 2778-2791.	2.7	1
87	Characteristics of the Bio-enhanced powder activated carbon dynamic membrane reactor for municipal wastewater treatment. , 2011 , , .		0
88	Conversion of microalgae into acetic acid by hydrothermal reaction., 2011,,.		0