
Sarah He Verkempinck

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7277494/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lipid digestion, micelle formation and carotenoid bioaccessibility kinetics: Influence of emulsion droplet size. Food Chemistry, 2017, 229, 653-662.	4.2	168
2	Emulsion stabilizing properties of citrus pectin and its interactions with conventional emulsifiers in oil-in-water emulsions. Food Hydrocolloids, 2018, 85, 144-157.	5.6	116
3	Kinetic approach to study the relation between in vitro lipid digestion and carotenoid bioaccessibility in emulsions with different oil unsaturation degree. Journal of Functional Foods, 2018, 41, 135-147.	1.6	91
4	Emulsion stability during gastrointestinal conditions effects lipid digestion kinetics. Food Chemistry, 2018, 246, 179-191.	4.2	87
5	Lipolysis products formation during in vitro gastric digestion is affected by the emulsion interfacial composition. Food Hydrocolloids, 2021, 110, 106163.	5.6	57
6	Pectin influences the kinetics of in vitro lipid digestion in oil-in-water emulsions. Food Chemistry, 2018, 262, 150-161.	4.2	50
7	The effect of pectin on inÂvitro β-carotene bioaccessibility and lipid digestion in low fat emulsions. Food Hydrocolloids, 2015, 49, 73-81.	5.6	48
8	Comparative study on lipid digestion and carotenoid bioaccessibility of emulsions, nanoemulsions and vegetable-based in situ emulsions. Food Hydrocolloids, 2019, 87, 119-128.	5.6	47
9	Lipid nanoparticles with fats or oils containing β-carotene: Storage stability and in vitro digestibility kinetics. Food Chemistry, 2019, 278, 396-405.	4.2	46
10	Structural and emulsion stabilizing properties of pectin rich extracts obtained from different botanical sources. Food Research International, 2021, 141, 110087.	2.9	33
11	<i>In vitro</i> βâ€Carotene Bioaccessibility and Lipid Digestion in Emulsions: Influence of Pectin Type and Degree of Methylâ€Esterification. Journal of Food Science, 2016, 81, C2327-C2336.	1.5	32
12	Advanced insight into the emulsifying and emulsion stabilizing capacity of carrot pectin subdomains. Food Hydrocolloids, 2020, 102, 105594.	5.6	32
13	Enzymatic and chemical conversions taking place during in vitro gastric lipid digestion: The effect of emulsion droplet size behavior. Food Chemistry, 2020, 326, 126895.	4.2	30
14	Processing as a tool to manage digestive barriers in plant-based foods: recent advances. Current Opinion in Food Science, 2020, 35, 1-9.	4.1	23
15	Targeted modifications of citrus pectin to improve interfacial properties and the impact on emulsion stability. Food Hydrocolloids, 2022, 132, 107841.	5.6	23
16	INFOGEST inter-laboratory recommendations for assaying gastric and pancreatic lipases activities prior to in vitro digestion studies. Journal of Functional Foods, 2021, 82, 104497.	1.6	22
17	Mathematical modelling of food hydrolysis during in vitro digestion: From single nutrient to complex foods in static and dynamic conditions. Trends in Food Science and Technology, 2021, 116, 870-883.	7.8	20
18	From single to multiresponse modelling of food digestion kinetics: The case of lipid digestion. Journal of Food Engineering, 2019, 260, 40-49.	2.7	19

#	Article	IF	CITATIONS
19	Understanding the impact of diverse structural properties of homogalacturonan rich citrus pectin-derived compounds on their emulsifying and emulsion stabilizing potential. Food Hydrocolloids, 2022, 125, 107343.	5.6	18
20	Digestion kinetics of lipids and proteins in plant-based shakes: Impact of processing conditions and resulting structural properties. Food Chemistry, 2022, 382, 132306.	4.2	17
21	In vitro gastric lipid digestion of emulsions with mixed emulsifiers: Correlation between lipolysis kinetics and interfacial characteristics. Food Hydrocolloids, 2022, 128, 107576.	5.6	15
22	Impact of processing on the production of a carotenoid-rich Cucurbita maxima cv. Hokkaido pumpkin juice. Food Chemistry, 2022, 380, 132191.	4.2	12
23	Development and validation of a rapid method to quantify neutral lipids by NP-HPLC-charged aerosol detector. Journal of Food Composition and Analysis, 2021, 102, 104022.	1.9	11
24	Towards understanding the modulation of in vitro gastrointestinal lipolysis kinetics through emulsions with mixed interfaces. Food Hydrocolloids, 2022, 124, 107240.	5.6	10
25	Gastric and small intestinal lipid digestion kinetics as affected by the gradual addition of lipases and bile salts. Food Bioscience, 2022, 46, 101595.	2.0	10
26	Strategic choices for in vitro food digestion methodologies enabling food digestion design. Trends in Food Science and Technology, 2022, 126, 61-72.	7.8	10
27	Effect of manufacturing conditions on in vitro starch and protein digestibility of (cellular) lentil-based ingredients. Food Research International, 2022, 158, 111546.	2.9	9
28	Studying semi-dynamic digestion kinetics of food: Establishing a computer-controlled multireactor approach. Food Research International, 2022, 156, 111301.	2.9	5
29	Investigating the role of the different molar mass fractions of a pectin rich extract from onion towards its emulsifying and emulsion stabilizing potential. Food Hydrocolloids, 2021, 117, 106735.	5.6	1