
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/727747/publications.pdf Version: 2024-02-01

KADI SCHILLTE

#	Article	IF	CITATIONS
1	Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer, 1999, 40, 5967-5971.	1.8	1,339
2	Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content. Composites Science and Technology, 2004, 64, 2363-2371.	3.8	1,328
3	Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites – A comparative study. Composites Science and Technology, 2005, 65, 2300-2313.	3.8	1,138
4	Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer, 2006, 47, 2036-2045.	1.8	1,004
5	Formation of percolating networks in multi-wall carbon-nanotube–epoxy composites. Composites Science and Technology, 2004, 64, 2309-2316.	3.8	571
6	Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composites. Composites Part A: Applied Science and Manufacturing, 2005, 36, 1525-1535.	3.8	563
7	Fundamental aspects of nano-reinforced composites. Composites Science and Technology, 2006, 66, 3115-3125.	3.8	541
8	Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites. Chemical Physics Letters, 2003, 370, 820-824.	1.2	540
9	Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites. Polymer, 2005, 46, 877-886.	1.8	490
10	Fracture toughness and failure mechanism of graphene based epoxy composites. Composites Science and Technology, 2014, 97, 90-99.	3.8	451
11	Functionally graded materials for biomedical applications. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 362, 40-60.	2.6	441
12	Functionalisation effect on the thermo-mechanical behaviour of multi-wall carbon nanotube/epoxy-composites. Composites Science and Technology, 2004, 64, 2303-2308.	3.8	441
13	Load and failure analyses of CFRP laminates by means of electrical resistivity measurements. Composites Science and Technology, 1989, 36, 63-76.	3.8	434
14	Aerographite: Ultra Lightweight, Flexible Nanowall, Carbon Microtube Material with Outstanding Mechanical Performance. Advanced Materials, 2012, 24, 3486-3490.	11.1	343
15	Glass-fibre-reinforced composites with enhanced mechanical and electrical properties – Benefits and limitations of a nanoparticle modified matrix. Engineering Fracture Mechanics, 2006, 73, 2346-2359.	2.0	334
16	Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites. Composites Part A: Applied Science and Manufacturing, 2005, 36, 1555-1561.	3.8	326
17	Two percolation thresholds in carbon nanotube epoxy composites. Composites Science and Technology, 2007, 67, 922-928.	3.8	310
18	Load and health monitoring in glass fibre reinforced composites with an electrically conductive nanocomposite epoxy matrix. Composites Science and Technology, 2008, 68, 1886-1894.	3.8	305

#	Article	IF	CITATIONS
19	A comparative study of melt spun polyamide-12 fibres reinforced with carbon nanotubes and nanofibres. Polymer, 2004, 45, 2001-2015.	1.8	293
20	Failure behavior of an epoxy matrix under different kinds of static loading. Composites Science and Technology, 2001, 61, 1615-1624.	3.8	282
21	Preparation and characterization of graphite nano-platelet (GNP)/epoxy nano-composite: Mechanical, electrical and thermal properties. European Polymer Journal, 2013, 49, 3878-3888.	2.6	274
22	CFRP-Recycling Following a Pyrolysis Route: Process Optimization and Potentials. Journal of Composite Materials, 2009, 43, 1121-1132.	1.2	242
23	Damage detection in CFRP by electrical conductivity mapping. Composites Science and Technology, 2001, 61, 921-930.	3.8	232
24	Agglomeration and electrical percolation behavior of carbon black dispersed in epoxy resin. Journal of Applied Polymer Science, 1997, 63, 1741-1746.	1.3	226
25	Piezoresistive response of epoxy composites with carbon nanoparticles under tensile load. Physical Review B, 2009, 80, .	1.1	206
26	Non-destructive testing of FRP by d.c. and a.c. electrical methods. Composites Science and Technology, 2001, 61, 837-847.	3.8	199
27	Low Percolation Threshold in Nanocomposites Based on Oxidized Single Wall Carbon Nanotubes and Poly(butylene terephthalate). Macromolecules, 2004, 37, 7669-7672.	2.2	191
28	Mode I and mode II fracture toughness of E-glass non-crimp fabric/carbon nanotube (CNT) modified polymer based composites. Engineering Fracture Mechanics, 2008, 75, 5151-5162.	2.0	184
29	Toughening mechanisms in polymer nanocomposites: From experiments to modelling. Composites Science and Technology, 2016, 123, 187-204.	3.8	181
30	Synergistic effects in network formation and electrical properties of hybrid epoxy nanocomposites containing multi-wall carbon nanotubes and carbon black. Journal of Materials Science, 2009, 44, 3241-3247.	1.7	168
31	Alternating electric field induced agglomeration of carbon black filled resins. Polymer, 2002, 43, 3079-3082.	1.8	149
32	Probabilistic Failure Strength Analyses of Graphite/Epoxy Cross-Ply Laminates. Journal of Composite Materials, 1984, 18, 339-356.	1.2	144
33	Water transport in epoxy/MWCNT composites. European Polymer Journal, 2013, 49, 2138-2148.	2.6	144
34	Polymer nanocomposite membranes for DMFC application. Journal of Membrane Science, 2005, 254, 139-146.	4.1	136
35	On nanocomposite toughness. Composites Science and Technology, 2008, 68, 329-331.	3.8	136
36	Improvement of fatigue life by incorporation of nanoparticles in glass fibre reinforced epoxy. Composites Part A: Applied Science and Manufacturing, 2010, 41, 1419-1424.	3.8	124

#	Article	IF	CITATIONS
37	Characterization and Analysis of Damage Mechanisms in Tension-Tension Fatigue of Graphite/Epoxy Laminates. , 1984, , 21-55.		117
38	Anomalous percolation transition in carbon-black–epoxy composite materials. Physical Review B, 1999, 59, 14349-14355.	1.1	112
39	Processing and assessment of poly(butylene terephthalate) nanocomposites reinforced with oxidized single wall carbon nanotubes. Polymer, 2005, 46, 5860-5867.	1.8	112
40	The effect of carbon nanoparticles on the fatigue performance of carbon fibre reinforced epoxy. Composites Part A: Applied Science and Manufacturing, 2014, 67, 233-240.	3.8	106
41	Hydrothermally resistant thermally reduced graphene oxide and multi-wall carbon nanotube based epoxy nanocomposites. Polymer Degradation and Stability, 2013, 98, 519-526.	2.7	103
42	Rheological and dynamic-mechanical behavior of carbon nanotube/vinyl ester–polyester suspensions and their nanocomposites. European Polymer Journal, 2007, 43, 2836-2847.	2.6	102
43	Nanocomposites of poly(vinyl chloride) with carbon nanotubes (CNT). Composites Science and Technology, 2007, 67, 890-894.	3.8	102
44	Critical aspects related to processing of carbon nanotube/unsaturated thermoset polyester nanocomposites. European Polymer Journal, 2007, 43, 374-379.	2.6	99
45	Strain concentration factors for fibers and matrix in unidirectional composites. Composites Science and Technology, 1991, 41, 237-256.	3.8	98
46	In situ observation of electric field induced agglomeration of carbon black in epoxy resin. Applied Physics Letters, 1998, 72, 2903-2905.	1.5	95
47	Analyzing the quality of carbon nanotube dispersions in polymers using scanning electron microscopy. Carbon, 2007, 45, 1279-1288.	5.4	92
48	Crystallization of Carbon Nanotube and Nanofiber Polypropylene Composites. Journal of Macromolecular Science - Physics, 2003, 42, 479-488.	0.4	88
49	Damage mapping of GFRP via electrical resistance measurements using nanocomposite epoxy matrix systems. Composites Part B: Engineering, 2014, 65, 80-88.	5.9	88
50	On the manufacturing and electrical and mechanical properties of ultra-high wt.% fraction aligned MWCNT and randomly oriented CNT epoxy composites. Carbon, 2015, 91, 275-290.	5.4	87
51	Can carbon nanotubes be used to sense damage in composites?. European Journal of Control, 2004, 29, 81-94.	1.6	86
52	Creep and recovery of epoxy/MWCNT nanocomposites. Composites Part A: Applied Science and Manufacturing, 2012, 43, 1212-1218.	3.8	85
53	Direction sensitive bending sensors based on multi-wall carbon nanotube/epoxy nanocomposites. Nanotechnology, 2008, 19, 475503.	1.3	84
54	Finite-element modeling of initial matrix failure in CFRP under static transverse tensile load. Composites Science and Technology, 2001, 61, 95-105.	3.8	83

#	Article	IF	CITATIONS
55	Tensile mechanical behavior and fracture toughness of MWCNT and DWCNT modified vinyl-ester/polyester hybrid nanocomposites produced by 3-roll milling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 523, 85-92.	2.6	83
56	Comparison of rheological and electrical percolation phenomena in carbon black and carbon nanotube filled epoxy polymers. Journal of Materials Science, 2011, 46, 659-669.	1.7	83
57	Advanced Calculation of the Room-Temperature Shapes of Unsymmetric Laminates. Journal of Composite Materials, 1999, 33, 1472-1490.	1.2	80
58	Fracture behaviour of fumed silica/epoxy nanocomposites. Composites Part A: Applied Science and Manufacturing, 2008, 39, 1851-1858.	3.8	76
59	Improvement of compressive strength after impact in fibre reinforced polymer composites by matrix modification with thermally reduced graphene oxide. Composites Science and Technology, 2013, 87, 36-41.	3.8	74
60	Nanocomposite toughness from a pull-out mechanism. Composites Science and Technology, 2013, 83, 27-31.	3.8	74
61	Long-Term Fatigue Behavior of Composite Materials. , 1983, , 136-159.		74
62	Microscopic yielding of CF/epoxy composites and the effect on the formation of thermal residual stresses. Composites Science and Technology, 2005, 65, 1626-1635.	3.8	73
63	Morphological investigations of polyethylene fibre reinforced polyethylene. Polymer, 1999, 40, 843-847.	1.8	72
64	Advanced calculation of the room-temperature shapes of thin unsymmetric composite laminates. Composite Structures, 1995, 32, 627-633.	3.1	70
65	A comparative investigation of electrical resistance and acoustic emission during cyclic loading of CFRP laminates. Composites Science and Technology, 2001, 61, 831-835.	3.8	70
66	On the relation between crack densities, stiffness degradation, and surface temperature distribution of tensile fatigue loaded glass-fibre non-crimp-fabric reinforced epoxy. Composites Part A: Applied Science and Manufacturing, 2006, 37, 222-228.	3.8	69
67	Multiwall carbon nanotube/epoxy composites produced by a masterbatch process. Mechanics of Composite Materials, 2006, 42, 395-406.	0.9	69
68	Solution impregnation of polyethylene fibre/polyethylene matrix composites. Composites Part A: Applied Science and Manufacturing, 1998, 29, 371-376.	3.8	68
69	Synthesis and Properties of Syndiotactic Poly(propylene)/Carbon Nanofiber and Nanotube Composites Prepared by in situ Polymerization with Metallocene/MAO Catalysts. Macromolecular Chemistry and Physics, 2005, 206, 1472-1478.	1.1	68
70	Simultaneous global and local strain sensing in SWCNT–epoxy composites by Raman and impedance spectroscopy. Composites Science and Technology, 2011, 71, 160-166.	3.8	68
71	Hierarchical Aerographite nano-microtubular tetrapodal networks based electrodes as lightweight supercapacitor. Nano Energy, 2017, 34, 570-577.	8.2	67
72	The effects of creep and fatigue stress ratio on the long-term behaviour of angle-ply CFRP. Composite Structures, 2002, 57, 205-210.	3.1	65

#	Article	IF	CITATIONS
73	Nanocomposites based on multiblock polyester elastomers (PEE) and carbon nanotubes (CNT). Composite Interfaces, 2003, 10, 95-102.	1.3	59
74	Combined electrical and rheological properties of shear induced multiwall carbon nanotube agglomerates in epoxy suspensions. European Polymer Journal, 2011, 47, 2069-2077.	2.6	59
75	Compressive failure of UD-CFRP containing void defects: In situ SEM microanalysis. Composites Science and Technology, 2011, 71, 1242-1249.	3.8	58
76	A comparative study of the electrical and mechanical properties of epoxy nanocomposites reinforced by CVD- and arc-grown multi-wall carbon nanotubes. Composites Science and Technology, 2010, 70, 173-180.	3.8	57
77	3D carbon networks and their polymer composites: Fabrication and electromechanical investigations of neat Aerographite and Aerographite-based PNCs under compressive load. Carbon, 2017, 111, 103-112.	5.4	57
78	Strong light scattering and broadband (UV to IR) photoabsorption in stretchable 3D hybrid architectures based on Aerographite decorated by ZnO nanocrystallites. Scientific Reports, 2016, 6, 32913.	1.6	56
79	Electrical conductivity of carbon black/fibres filled glass-fibre-reinforced thermoplastic composites. Composites Part A: Applied Science and Manufacturing, 2006, 37, 1390-1395.	3.8	55
80	Towards nitrogen-containing CNTs for fuel cell electrodes. Composites Science and Technology, 2009, 69, 1570-1579.	3.8	55
81	Wet powder impregnation for polyethylene composites: preparation and mechanical properties. Composites Part A: Applied Science and Manufacturing, 1999, 30, 369-373.	3.8	53
82	Influence of voids on the compressive failure behaviour of fibre-reinforced composites. Composites Science and Technology, 2015, 117, 225-233.	3.8	53
83	Fretting wear performance of glass-, carbon-, and aramid-fibre/epoxy and peek composites. Wear, 1990, 135, 207-216.	1.5	52
84	Influence of surface treatment on mechanical behaviour of fumed silica/epoxy resin nanocomposites. Composite Interfaces, 2006, 13, 699-715.	1.3	52
85	Is It Worth the Effort to Reinforce Polymers With Carbon Nanotubes?. Macromolecular Theory and Simulations, 2011, 20, 350-362.	0.6	52
86	Percolation in carbon black filled epoxy resin. Macromolecular Symposia, 1996, 104, 261-268.	0.4	51
87	Temperature dependence of electrical conductivity in double-wall and multi-wall carbon nanotube/polyester nanocomposites. Journal of Materials Science, 2007, 42, 9689-9695.	1.7	50
88	Pressure and temperature induced electrical resistance change in nano-carbon/epoxy composites. Composites Science and Technology, 2015, 115, 1-8.	3.8	49
89	Low powered, tunable and ultra-light aerographite sensor for climate relevant gas monitoring. Journal of Materials Chemistry A, 2016, 4, 16723-16730.	5.2	49
90	Templating of crystallization and shear-induced self-assembly of single-wall carbon nanotubes in a polymer-nanocomposite. Polymer, 2006, 47, 341-345.	1.8	45

#	Article	IF	CITATIONS
91	Three-dimensional Aerographite-GaN hybrid networks: Single step fabrication of porous and mechanically flexible materials for multifunctional applications. Scientific Reports, 2015, 5, 8839.	1.6	45
92	Determining the effect of voids in GFRP on the damage behaviour under compression loading using acoustic emission. Composites Part B: Engineering, 2015, 70, 184-188.	5.9	44
93	Electro-mechanical piezoresistive properties of three dimensionally interconnected carbon aerogel (Aerographite)-epoxy composites. Composites Science and Technology, 2016, 134, 226-233.	3.8	44
94	On modelling the mechanical degradation of fatigue loaded glass-fibre non-crimp fabric reinforced epoxy laminates. Composites Science and Technology, 2006, 66, 657-664.	3.8	43
95	The imaging mechanism, imaging depth, and parameters influencing the visibility of carbon nanotubes in a polymer matrix using an SEM. Carbon, 2011, 49, 1955-1964.	5.4	43
96	Improvement of carbon nanotube dispersion in thermoplastic composites using a three roll mill at elevated temperatures. Composites Science and Technology, 2013, 74, 78-84.	3.8	43
97	Sliding wear performance of HD-PE reinforced by continuous UHMWPE fibres. Wear, 2000, 244, 20-28.	1.5	42
98	Catalytically active CNT–polymer-membrane assemblies: From synthesis to application. Journal of Membrane Science, 2008, 321, 123-130.	4.1	41
99	Titania-doped multi-walled carbon nanotubes epoxy composites: Enhanced dispersion and synergistic effects in multiphase nanocomposites. Polymer, 2008, 49, 5105-5112.	1.8	40
100	On the influence of nanotube properties, processing conditions and shear forces on the electrical conductivity of carbon nanotube epoxy composites. Nanotechnology, 2009, 20, 155703.	1.3	40
101	The production of aligned MWCNT/polypyrrole composite films. Carbon, 2013, 60, 229-235.	5.4	40
102	Electrically conductive glass fibre reinforced epoxy resin. Materials Research Innovations, 1998, 2, 164-169.	1.0	38
103	Melt processing and filler/matrix interphase in carbon nanotube reinforced poly(etherâ€ester) thermoplastic elastomer. Polymer Engineering and Science, 2008, 48, 2033-2038.	1.5	38
104	Lamb waves for non-contact fatigue state evaluation of composites under various mechanical loading conditions. Composites Part A: Applied Science and Manufacturing, 2012, 43, 1203-1211.	3.8	38
105	Morphological influence of carbon nanofillers on the piezoresistive response of carbon nanoparticle/epoxy composites under mechanical load. European Polymer Journal, 2016, 85, 198-210.	2.6	38
106	Anomalous small-angle X-ray scattering characterization of composites based on sulfonated poly(ether ether ketone), zirconium phosphates, and zirconium oxide. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 567-575.	2.4	35
107	Photo-elastic analysis of fibre-reinforced model composite materials. Composites Science and Technology, 1997, 57, 859-867.	3.8	34
108	Organic modification of layered silicates: structural and thermal characterizations. Journal of Non-Crystalline Solids, 2005, 351, 970-975.	1.5	34

#	Article	IF	CITATIONS
109	Comparison of new conductive adhesives based on silver and carbon nanotubes for solar cells interconnection. Solar Energy Materials and Solar Cells, 2013, 109, 155-159.	3.0	34
110	Thermally reduced graphene oxide acting as a trap for multiwall carbon nanotubes in bi-filler epoxy composites. Composites Part A: Applied Science and Manufacturing, 2013, 49, 51-57.	3.8	34
111	Anomalous water diffusion in epoxy/carbon nanoparticle composites. Polymer Degradation and Stability, 2019, 164, 127-135.	2.7	34
112	Degradation monitoring of impact damaged carbon fibre reinforced polymers under fatigue loading with pulse phase thermography. Composites Part B: Engineering, 2014, 59, 221-229.	5.9	33
113	Nafion®/ODF-silica composite membranes for medium temperature proton exchange membrane fuel cells. Journal of Power Sources, 2014, 246, 950-959.	4.0	32
114	Tough Alumina/Polymer Layered Composites with High Ceramic Content. Journal of the American Ceramic Society, 2015, 98, 1285-1291.	1.9	32
115	Nanomechanics of individual aerographite tetrapods. Nature Communications, 2017, 8, 14982.	5.8	32
116	Fracture, failure and compression behaviour of a 3D interconnected carbon aerogel (Aerographite) epoxy composite. Composites Science and Technology, 2016, 122, 50-58.	3.8	31
117	Influence of fibre and matrix failure strain on static and fatigue properties of carbon fibre-reinforced plastics. Composites Science and Technology, 1987, 29, 257-272.	3.8	30
118	Damage characterisation of fibre metal laminates under interlaminar shear load. Composites Part A: Applied Science and Manufacturing, 2009, 40, 925-931.	3.8	30
119	Improvement of bonding strength of scarf-bonded carbon fibre/epoxy laminates by Nd:YAG laser surface activation. Composites Part A: Applied Science and Manufacturing, 2014, 67, 123-130.	3.8	30
120	Strain-dependent electrical resistance of epoxy/MWCNT composite after hydrothermal aging. Composites Science and Technology, 2015, 117, 107-113.	3.8	30
121	Tailoring the electrical properties of MWCNT/epoxy composites controlling processing conditions. Composites Part A: Applied Science and Manufacturing, 2012, 43, 1441-1447.	3.8	29
122	Orientation Distribution of Vertically Aligned Multiwalled Carbon Nanotubes. Journal of Physical Chemistry C, 2014, 118, 9507-9513.	1.5	29
123	Fatigue behaviour and rate-dependent properties of aramid fibre/carbon fibre hybrid composites. Composites, 1989, 20, 537-544.	0.9	28
124	Damage mechanisms under tensile and fatigue loading of continuous fibre-reinforced metal-matrix composites. Composites, 1993, 24, 197-208.	0.9	28
125	Voids and their effect on the strain rate dependent material properties and fatigue behaviour of non-crimp fabric composites materials. Composites Part B: Engineering, 2015, 83, 346-351.	5.9	28
126	Permeability and Conductivity Studies on Ionomer-Polysilsesquioxane Hybrid Materials. Macromolecular Chemistry and Physics, 2006, 207, 336-341.	1.1	27

#	Article	IF	CITATIONS
127	Combined Raman and dielectric spectroscopy on the curing behaviour and stress build up of carbon nanotube–epoxy composites. Composites Science and Technology, 2009, 69, 1540-1546.	3.8	27
128	Fatigue Testing of Carbon Fibre Reinforced Polymers under VHCF Loading. , 2013, 2, 18-24.		27
129	Damage Mechanisms - Including Edge Effects - in Carbon Fibre-reinforced Composite Materials. Composite Materials Series, 1989, , 273-324.	0.2	26
130	Polyamideâ€12/Functionalized Carbon Nanofiber Composites: Evaluation of Thermal and Mechanical Properties. Macromolecular Materials and Engineering, 2010, 295, 397-405.	1.7	26
131	Individual hollow and mesoporous aero-graphitic microtube based devices for gas sensing applications. Applied Physics Letters, 2017, 110, .	1.5	26
132	Micromechanical properties of poly(butylene terephthalate) nanocomposites with single- and multi-walled carbon nanotubes. Composite Interfaces, 2006, 13, 33-45.	1.3	25
133	Investigation of shear thinning behavior and microstructures of MWCNT/epoxy and CNF/epoxy suspensions under steady shear conditions. European Polymer Journal, 2012, 48, 1042-1049.	2.6	25
134	Time and temperature dependent piezoresistance of carbon nanofiller/polymer composites under dynamic load. Journal of Materials Science, 2012, 47, 2648-2657.	1.7	25
135	X-ray microdiffraction and micro-Raman study on an injection moulding SWCNT-polymer nanocomposite. Composites Science and Technology, 2007, 67, 798-805.	3.8	24
136	Novel ceramic–polymer composites synthesized by compaction of polymer-encapsulated TiO2-nanoparticles. Composites Science and Technology, 2011, 72, 65-71.	3.8	24
137	Nondimensional simulation of influence of toughness of interface on tensile stress–strain behavior of unidirectional microcomposite. Composites Part A: Applied Science and Manufacturing, 2001, 32, 749-761.	3.8	23
138	Title is missing!. Composites Science and Technology, 2007, 67, 777.	3.8	23
139	Dissolution of MWCNTs by using polyoxadiazoles, and highly effective reinforcement of their composite films. Journal of Polymer Science Part A, 2010, 48, 5172-5179.	2.5	23
140	A Tunable Scaffold of Microtubular Graphite for 3D Cell Growth. ACS Applied Materials & Interfaces, 2016, 8, 14980-14985.	4.0	23
141	Fatigue behaviour of aligned short carbon-fibre reinforced polyimide and polyethersulphone composites. Journal of Materials Science, 1985, 20, 3353-3364.	1.7	22
142	Electrical conductivity of melt-spun thermoplastic poly(hydroxy ether of bisphenol A) fibres containing multi-wall carbon nanotubes. Polymer, 2016, 97, 80-94.	1.8	22
143	Thermomechanical Analysis of Micromechanical Formation of Residual Stresses and Initial Matrix Failure in CFRP. JSME International Journal Series A-Solid Mechanics and Material Engineering, 2004, 47, 349-356.	0.4	21
144	Functionalization of carbon nanofibers (CNFs) through atom transfer radical polymerization for the preparation of poly(<i>tert</i> â€butyl acrylate)/CNF materials: Spectroscopic, thermal, morphological, and physical characterizations. Journal of Polymer Science Part A, 2008, 46, 3326-3335.	2.5	20

#	Article	IF	CITATIONS
145	Characterization of the State of Dispersion of Carbon Nanotubes in Polymer Nanocomposites. Chemie-Ingenieur-Technik, 2011, 83, 767-781.	0.4	20
146	The life and death of carbon nanotubes. RSC Advances, 2012, 2, 2909.	1.7	20
147	Influence of artificial pre-stressing during curing of CFRP laminates on interfibre transverse cracking. Composites Science and Technology, 1992, 44, 361-367.	3.8	19
148	Sulfonated polyoxadiazole composites containing carbon nanotubes prepared via in situ polymerization. Composites Science and Technology, 2009, 69, 220-227.	3.8	19
149	Electric field effects on CNTs/vinyl ester suspensions and the resulting electrical and thermal composite properties. Composites Science and Technology, 2010, 70, 2102-2110.	3.8	19
150	Fundamentals of the temperature-dependent electrical conductivity of a 3D carbon foam—Aerographite. Synthetic Metals, 2018, 235, 145-152.	2.1	19
151	Studies on morphology and interphase of poly(butylene terephthalate)/carbon nanotubes nanocomposites. Polymer Engineering and Science, 2010, 50, 1571-1576.	1.5	18
152	Self-Organized Three-Dimensional Nanostructured Architectures in Bulk GaN Generated by Spatial Modulation of Doping. ECS Journal of Solid State Science and Technology, 2016, 5, P218-P227.	0.9	18
153	Micro/macro-mechanical approach of first ply failure in CFRP. Journal of Materials Science, 2006, 41, 6760-6767.	1.7	17
154	Thermal curing behavior of MWCNT modified vinyl esterâ€polyester resin suspensions prepared with 3â€roll milling technique. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 1511-1522.	2.4	17
155	Photoelastic study of stresses in the vicinity of a unique void in a fibre-reinforced model composite under compression. Composites Science and Technology, 2013, 84, 72-77.	3.8	17
156	Monte-Carlo simulation of multiple fracture in the transverse ply of cross-ply graphite-epoxy laminates. Journal of Materials Science, 1991, 26, 5433-5444.	1.7	16
157	Ionomer-silicates composite membranes: Permeability and conductivity studies. European Polymer Journal, 2005, 41, 1350-1356.	2.6	16
158	Effect of surface treatment on mode I interlaminar fracture behaviour of plain glass woven fabric composites: Part I. Report of the 2nd round-robin test results. Composite Interfaces, 2000, 7, 227-242.	1.3	15
159	EVIDENCE OF A TRANSCRYSTALLINE INTERPHASE IN FIBER PE HOMOCOMPOSITES AS REVEALED BY MICRODIFFRACTION EXPERIMENTS USING SYNCHROTRON RADIATION. Journal of Macromolecular Science - Physics, 2001, 40, 749-761.	0.4	15
160	Imaging of conductive filler networks in heterogeneous materials by scanning Kelvin microscopy. Journal of Applied Polymer Science, 2001, 82, 3381-3386.	1.3	15
161	Noncovalent functionalization of multiwalled and doubleâ€walled carbon nanotubes: Positive effect of the filler functionalization on high glass transition temperature epoxy resins. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 1860-1868.	2.4	15
162	SAXS/WAXS characterization of proton-conducting polymer membranes containing phosphomolybdic acid. Journal of Non-Crystalline Solids, 2005, 351, 2194-2199.	1.5	14

#	Article	IF	CITATIONS
163	Evaluation of a critical impact energy in GFRP under fatigue loading. Composites Science and Technology, 2014, 102, 28-34.	3.8	14
164	Characterization of a Cî—,Al metal matrix composite precursor. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1991, 135, 59-63.	2.6	13
165	Fretting fatigue of continuous carbon fibre reinforced polymer composites. Wear, 1991, 145, 167-188.	1.5	13
166	A comparative study for the calculation of the temperature dependent shapes of unsymmetric laminates based on finite element analysis and extended classical lamination theory. Mechanics of Composite Materials, 1995, 31, 247-254.	0.9	13
167	Impact of Filler Functionalisation on the Crystallinity, Thermal Stability and Mechanical Properties of Thermoplastic Elastomer/Carbon Nanotube Nanocomposites. Macromolecular Materials and Engineering, 2013, 298, 359-370.	1.7	13
168	Compression Fracture of CFRP Laminates Containing Stress Intensifications. Materials, 2017, 10, 1039.	1.3	13
169	Damage monitoring in polymer matrix structures. European Physical Journal Special Topics, 1993, 03, C7-1629-C7-1636.	0.2	12
170	A shear-lag approach to the early stage of interfacial failure in the fiber direction in notched two-dimensional unidirectional composites. Composites Science and Technology, 1997, 57, 775-785.	3.8	12
171	The interaction of epoxy resin and an additional electrolyte with non-oxidised carbon black in colloidal dispersions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 189, 183-188.	2.3	12
172	The influence of residual stresses implicated via cure volume shrinkage on CF/VEUH—composites. Journal of Materials Science, 2006, 41, 383-388.	1.7	12
173	Polymere Nanoverbundwerkstoffe: Chancen, Risiken und Potenzial zur Verbesserung der mechanischen und physikalischen Eigenschaften. Materialwissenschaft Und Werkstofftechnik, 2006, 37, 698-703.	0.5	12
174	Barrier Properties of Poly(benzimidazole)-Layered Silicates Nanocomposite Materials. Advanced Engineering Materials, 2006, 8, 1010-1015.	1.6	12
175	Fretting fatigue studies of carbon fibre/epoxy resin laminates. Part II: Effects of a fretting component on fatigue life. Composites Science and Technology, 1987, 30, 203-219.	3.8	11
176	Fretting fatigue studies on carbon fibre/epoxy resin laminates: l—design of a fretting fatigue test apparatus. Composites Science and Technology, 1987, 30, 19-34.	3.8	11
177	Relaxation behavior of poly(ethylene terephthalate)/poly(ethylene naphthalene 2,6-dicarboxylate) blends prepared by cryogenic blending. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 2570-2578.	2.4	11
178	Damage Evaluation of GLARE®4B under Interlaminar Shear Loading at Different Temperature Conditions. Advanced Composites Letters, 2005, 14, 096369350501400.	1.3	11
179	Carbon Nanotube-Reinforced Polymers: a State of the Art Review. , 2005, , 3-23.		11
180	Nanostructured MWCNT/Polypyrrole Actuators with Anisotropic Strain Response. Advanced Engineering Materials, 2016, 18, 597-607.	1.6	11

#	Article	IF	CITATIONS
181	Fretting fatigue studies on carbon fibre/epoxy resin laminates: III—Microscopy of fretting fatigue failure mechanisms. Composites Science and Technology, 1988, 33, 155-176.	3.8	10
182	Rate-dependent fatigue of aramid-fibre/carbon-fibre hybrids. Journal of Materials Science, 1990, 25, 1313-1317.	1.7	10
183	Strain based service time estimation for angle-ply laminates. Composites Science and Technology, 2002, 62, 1043-1050.	3.8	10
184	Peroxide Assisted Coupling and Characterization of Carbonâ€Nanofiberâ€Reinforced Poly(propylene) Composites. Macromolecular Materials and Engineering, 2007, 292, 1095-1102.	1.7	10
185	Rheological properties and irreversible dispersion changes in carbon nanotube/epoxy systems. Polymer Engineering and Science, 2012, 52, 849-855.	1.5	10
186	Ethylene-vinyl Acetate Thermoplastic Copolymers Filled with Multiwall Carbon Nanotubes: Effect of Hydrothermal Ageing on Mechanical, Thermal, and Electrical Properties. Macromolecular Materials and Engineering, 2014, 299, 41-50.	1.7	10
187	Hierarchical analysis of the degradation of fibre-reinforced polymers under the presence of void imperfections. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150279.	1.6	10
188	Influence of monotonic and cyclic predeformation on fatigue crack propagation of high-strength aluminum alloys. Engineering Fracture Mechanics, 1980, 13, 1009-1021.	2.0	9
189	Temperature-dependent mechanical behaviour of PI and PES resins used as matrices for short-fibre reinforced laminates. Journal of Materials Science, 1986, 21, 3561-3570.	1.7	9
190	Modelling of the transverse strength of fibre reinforced epoxy composite at low and high temperature. Composite Interfaces, 2005, 12, 379-394.	1.3	9
191	Micromechanical modelling of shear deformation of a 90°-ply in Glare® at elevated temperatures. Computational Materials Science, 2007, 39, 142-148.	1.4	9
192	Influence of Delamination Characteristics in Carbon Fibre/Epoxy Laminates on Signal Features of Pulse Thermography. Journal of Nondestructive Evaluation, 2015, 34, 1.	1.1	9
193	Fretting and Fretting Fatigue of Advanced Composite Laminates. Composite Materials Series, 1993, 8, 669-722.	0.2	9
194	PEBAX TM -Silanized Al ₂ O ₃ Composite. Synthesis and Characterization. Open Journal of Polymer Chemistry, 2012, 02, 63-69.	1.8	9
195	S-glass/Kevlar-149 hybrid microcomposites in stress-rupture: A Monte Carlo simulation. Composites Science and Technology, 1995, 54, 211-221.	3.8	8
196	Compressive Static and Fatigue Loading of Continuous Fiber-Reinforced Composites. , 1994, , 278-305.		8
197	Characterization of proton-conducting organic-inorganic polymeric materials by ASAXS. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 2981-2992.	2.4	7
198	Fast and highly efficient oneâ€pot synthesis of polyoxadiazole/carbon nanotube nanocomposites in mild acid. Polymer International, 2011, 60, 517-528.	1.6	7

#	Article	IF	CITATIONS
199	Processing, growth mechanism and thermodynamic calculations of carbon foam with a hollow tetrapodal morphology – Aerographite. Applied Surface Science, 2019, 470, 535-542.	3.1	7
200	Enhanced Dispersion of MWCNTs and Synergistic Properties in Multiphase Epoxy Nanocomposites by Incorporation of Inorganic Nanoparticles. Solid State Phenomena, 0, 151, 176-180.	0.3	6
201	New functions in polymer composites using a nanoparticle-modified matrix. , 2015, , 875-902.		6
202	Tailored crystalline width and wall thickness of an annealed 3D carbon foam composites and their mechanical properties. Carbon, 2019, 142, 60-67.	5.4	6
203	Polyethylene Gradient Material, Processing and Properties. Materials Science Forum, 1999, 308-311, 101-106.	0.3	5
204	High-density Polyethylene Fiber/Polyethylene Matrix Composites. , 2000, , 231-248.		5
205	SWCNT as Cure-Induced Stress Sensors in Epoxy Nanocomposites. Solid State Phenomena, 0, 151, 48-53.	0.3	5
206	Effect of filler functionalization on thermo-mechanical properties of polyamide-12/carbon nanofibers composites: a study of filler–matrix molecular interactions. Journal of Materials Science, 2013, 48, 8427-8437.	1.7	5
207	Estimation of the 90° ply strength distribution and shear lag parameter from multiple transverse cracking in graphite-epoxy cross-ply laminates. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1992, 158, 65-70.	2.6	4
208	Effects of surface treatment and weave structure on interlaminar fracture behaviour of plain glass woven fabric composites: Part II. Report of the 2nd round robin test results. Composite Interfaces, 2002, 9, 207-218.	1.3	4
209	Analysis of proton-conducting organic–inorganic hybrid materials based on sulphonated poly(ether) Tj ETQq1 1 355, 6-11.	l 0.78431 1.5	4 rgBT /Ove 4
210	In situ synthesis of polyoxadiazoles (POD) and carbon black (CB) as an approach to POD/CB nanocomposites. Composites Part B: Engineering, 2011, 42, 414-420.	5.9	4
211	Is It Worth the Effort to Reinforce Polymers with Carbon Nanotubes?. , 2015, , 207-232.		4
212	Growth of interfacial debonding in notched two-dimensional unidirectional composite under stress and displacement controls. Composite Interfaces, 2000, 7, 459-477.	1.3	3
213	Modelling of the Initial Failure of Cfrp Structures by Partial Discretisation: Amicro / Macro-Mechanical Approach of First Ply Failure. Advanced Composites Letters, 2004, 13, 096369350401300.	1.3	3
214	A Highly Efficient Oneâ€Pot Method for the Synthesis of Carbon Black/Poly(4,4′â€Diphenyletherâ€1,3,4â€Oxadiazoles) Composites. Macromolecular Chemistry and Physics, 2011, 212, 1236-1244.	1.1	3
215	Effective Stiffness of Wavy Aligned Carbon Nanotubes for Modeling of Controlled-Morphology Polymer Nanocomposites. , 2012, , .		3
216	Automatic evaluation of non-destructive testing of composites. Insight: Non-Destructive Testing and Condition Monitoring, 2014, 56, 319-325.	0.3	3

#	Article	IF	CITATIONS
217	Monte-Carlo simulation of multiple fracture in the transverse ply of cross-ply graphite-epoxy laminates. Journal of Materials Science, 1991, 26, 5433-5444.	1.7	3
218	Aligned Nafion® Nanocomposites: Preparation and Morphological Characterization. Macromolecular Materials and Engineering, 2003, 288, 175-180.	1.7	2
219	Nondimensional simulation of tensile behavior of UD microcomposite under energy release rate and shear stress criteria for interfacial debonding. Composite Interfaces, 2004, 11, 169-194.	1.3	2
220	Production and Properties of Glass Fibre-Reinforced Polymer Composites with Nanoparticle Modified Epoxy Matrix. Materials Research Society Symposia Proceedings, 2005, 901, 1.	0.1	2
221	Conductive adhesive based on carbon nanotubes for solar cells interconnection. , 2012, , .		2
222	Non-Scalar Approach to Simulate the Mechanical Degradation Process in Fibre-Reinforced-Polymers (FRPs). , 2003, , 238-251.		2
223	High Stiffness and High Impact StrengthPolymer Composites by Hot Compaction ofOriented Fibers and Tapes. , 2005, , .		2
224	Cyclic mechanical loading. , 1999, , 151-185.		1
225	Percolation in Multi-Wall Carbon Nanotube-Epoxy Composites Influence of processing parameters, nanotube aspect ratio and electric fields on the bulk conductivity. Materials Research Society Symposia Proceedings, 2003, 788, 2101.	0.1	1
226	Fundamental investigations of carbon nanotubes working as actuators. Proceedings of SPIE, 2011, , .	0.8	1
227	6.8 Carbon Nanotube-Based Composites. , 2018, , 201-229.		1
228	Thermomechanical characteristics of ODF-silica Nafion ® nanocomposite for PEMFCs application. Materials Today: Proceedings, 2018, 5, 14026-14030.	0.9	1
229	Damage initiation and failure mechanisms of carbon nanoparticle modified CFRP up to very high cycle fatigue-loading. , 2018, , 585-606.		1
230	Systematic Fretting Wear and Fretting Fatigue Studies on Carbon Fibre/Epoxy Laminates. , 1989, , 615-620.		1
231	Some aspects of health monitoring in composite materials. , 1996, 2779, 90.		0
232	Nondestructive testing of carbon-fiber-reinforced laminates by monitoring of electrical resistance. , 2001, , .		0
233	An Analytical Model to Predict Fracture of Off-Axis Unidirectional Composites. Advanced Composites Letters, 2002, 11, 096369350201100.	1.3	0
234	Impact of Functionalization of Nanoparticles on the Barrier Properties of Ionomernanocomposite Membranes for DMFC. ECS Transactions, 2006, 3, 1297-1304.	0.3	0

#	Article	IF	CITATIONS
235	Synergistic Physical Properties of Multiphase Nanocomposites with Carbon Nanotubes and Inorganic Particles. Materials Research Society Symposia Proceedings, 2007, 1056, 1.	0.1	Ο
236	Modelling the strength of fibre-reinforced composites. , 2005, , 99-123.		0
237	A Contribution to the Evaluation of Sequence Effects under Variable Amplitude Loading by Applying Defined Predeformations. , 1984, , 777-785.		0
238	Load and Damage Dependent Thermal Effects in CFRP-Laminates. Lecture Notes in Engineering, 1990, , 178-187.	0.1	0