Tülay serin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7277141/publications.pdf

Version: 2024-02-01

37 papers	996 citations	17 h-index	31 g-index
37	37	37	1259
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Identification of Current Transport Mechanisms and Temperature Sensing Qualifications for Al/(ZnS-PVA)/p-Si Structures at Low and Moderate Temperatures. IEEE Sensors Journal, 2022, 22, 99-106.	2.4	18
2	Enhancement of Nonlinear Absorption in Defect Controlled ZnO Polycrystalline Thin Films by Means of Coâ€Doping. Physica Status Solidi (B): Basic Research, 2021, 258, 2000539.	0.7	15
3	Comparison of characteristic properties of Al, Ga, and In-doped ZnO thin films formed by sol-gel method. Superlattices and Microstructures, 2021, 159, 107034.	1.4	4
4	Investigation of the structural and optical properties of copper-titanium oxide thin films produced by changing the amount of copper. Thin Solid Films, 2019, 685, 293-298.	0.8	6
5	High quality optoelectronic properties of Sb-doped SnO ₂ by spray pyrolysis with less solution. Materials Research Express, 2019, 6, 086423.	0.8	7
6	Comprehensive structural analysis and electrical properties of (Cu, Al and In)-doped SnO2 thin films. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2019, 251, 114445.	1.7	23
7	Monitoring the characteristic properties of Ga-doped ZnO by Raman spectroscopy and atomic scale calculations. Journal of Molecular Structure, 2019, 1180, 505-511.	1.8	40
8	Determination of the critical carrier concentration for the metal–insulator transition in Ga-doped ZnO. Journal of Materials Science: Materials in Electronics, 2018, 29, 14111-14115.	1.1	12
9	Effects of Co and Cu dopants on the structural, optical, and electrical properties of ZnO nanocrystals. Journal of Materials Science: Materials in Electronics, 2017, 28, 6088-6092.	1.1	14
10	An Understanding of the Band Gap Shrinkage in Sn-Doped ZnO for Dye-Sensitized Solar Cells. Journal of Electronic Materials, 2017, 46, 6739-6744.	1.0	22
11	Al and X (Sn, Cu, In) co-doped ZnO nanocrystals. Journal of Materials Science: Materials in Electronics, 2016, 27, 6179-6182.	1.1	11
12	Studies on optical properties of antimony doped SnO 2 films. Applied Surface Science, 2015, 352, 16-22.	3.1	42
13	Influence of oxygen flow rate in CuO. Applied Surface Science, 2015, 352, 155-157.	3.1	7
14	Hopping conduction in In-doped CuO thin films. Applied Surface Science, 2014, 318, 105-107.	3.1	37
15	Electrical And Microstructural Properties Of (Cu, Al, In)-doped SnO2 Films Deposited By Spray Pyrolysis. Advanced Materials Letters, 2014, 5, 309-314.	0.3	21
16	Carrier transport in In-doped CuO thin films. Philosophical Magazine, 2013, 93, 3110-3117.	0.7	10
17	Barrier-controlled electron transport in Sn-doped ZnO polycrystalline thin films. Thin Solid Films, 2012, 522, 90-94.	0.8	16
18	Fluctuating in the hopping rate of CuO thin films with respect to substrate temperature. Superlattices and Microstructures, 2012, 52, 759-764.	1.4	13

#	Article	IF	Citations
19	The effects of film thickness on the optical properties of TiO ₂ â€"SnO ₂ compound thin films. Physica Scripta, 2011, 84, 065602.	1.2	52
20	Multiphonon hopping of carriers in CuO thin films. Physica B: Condensed Matter, 2011, 406, 3551-3555.	1.3	30
21	The change in the electrical transport mechanism from the grain boundary conduction to the nearest-neighbor hopping conduction in SnO2. Journal of Materials Science: Materials in Electronics, 2011, 22, 872-875.	1.1	13
22	Extraction of important electrical parameters of CuO. Physica B: Condensed Matter, 2011, 406, 575-578.	1.3	28
23	Estimation of compensation ratio by identifying the presence of different hopping conduction mechanisms in SnO2 thin films. Thin Solid Films, 2011, 519, 2302-2307.	0.8	34
24	Electrical Properties of Polycrystalline SnO\$_{2}\$ Thin Films. Applied Physics Express, 2011, 4, 121101.	1.1	12
25	Electron–Electron Interactions in Sb-Doped SnO2 Thin Films. Journal of Electronic Materials, 2010, 39, 1152-1158.	1.0	37
26	The thickness effect on the electrical conduction mechanism in titanium oxide thin films. Journal of Alloys and Compounds, 2010, 493, 227-232.	2.8	39
27	Crossover from Nearest-Neighbor Hopping Conduction to Efros–Shklovskii Variable-Range Hopping Conduction in Hydrogenated Amorphous Silicon Films. Japanese Journal of Applied Physics, 2009, 48, 111203.	0.8	59
28	Pirani Vacuum Gauges Using Silicon-on-Glass and Dissolved-Wafer Processes for the Characterization of MEMS Vacuum Packaging. IEEE Sensors Journal, 2009, 9, 263-270.	2.4	39
29	The role of the interface insulator layer and interface states on the current-transport mechanism of Schottky diodes in wide temperature range. Microelectronic Engineering, 2006, 83, 499-505.	1.1	105
30	Annealing effects on the properties of copper oxide thin films prepared by chemical deposition. Semiconductor Science and Technology, 2005, 20, 398-401.	1.0	195
31	Determination of the distribution of electronic states in hydrogenated amorphous germanium by capacitance techniques. Semiconductor Science and Technology, 2004, 19, 270-276.	1.0	2
32	Current-limiting property of Cu/cupric oxide/Cu sandwich structure. Semiconductor Science and Technology, 2002, 17, 60-64.	1.0	18
33	The effect of humidity on electronic conductivity of an Au/CuO/Cu2O/Cu sandwich structure. Semiconductor Science and Technology, 2000, 15, 112-116.	1.0	10
34	Determination of thermal annealing effect in intrinsic a-Si:H film. Journal of Non-Crystalline Solids, 2000, 276, 163-168.	1.5	2
35	Effect of reverse-bias annealing on thermal equilibrium changes in hydrogenated amorphous germanium. Semiconductor Science and Technology, 1999, 14, 1048-1051.	1.0	2
36	The thermal equilibrium changes on reverse bias annealing in Schottky diodes. Semiconductor Science and Technology, 1997, 12, 1451-1454.	1.0	1

#	Article	IF	CITATIONS
37	The investigation of an annealing effect on the density of states in a-Si:H film. Semiconductor Science and Technology, 1997, 12, 291-295.	1.0	0