Tanara V Peres

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7276250/publications.pdf Version: 2024-02-01

TANADA V DEDES

#	Article	IF	CITATIONS
1	"Manganese-induced neurotoxicity: a review of its behavioral consequences and neuroprotective strategies― BMC Pharmacology & Toxicology, 2016, 17, 57.	2.4	243
2	Neurotoxic effect of active ingredients in sunscreen products, a contemporary review. Toxicology Reports, 2017, 4, 245-259.	3.3	185
3	Manganese-exposed developing rats display motor deficits and striatal oxidative stress that are reversed by Trolox. Archives of Toxicology, 2013, 87, 1231-1244.	4.2	76
4	In Vivo Manganese Exposure Modulates Erk, Akt and Darpp-32 in the Striatum of Developing Rats, and Impairs Their Motor Function. PLoS ONE, 2012, 7, e33057.	2.5	75
5	Epigallocatechin-3-gallate protects rat brain mitochondria against cadmium-induced damage. Food and Chemical Toxicology, 2011, 49, 2618-2623.	3.6	58
6	Manganese-induced neurotoxicity: from <i>C. elegans</i> to humans. Toxicology Research, 2015, 4, 191-202.	2.1	58
7	Developmental exposure to manganese induces lasting motor and cognitive impairment in rats. NeuroToxicology, 2015, 50, 28-37.	3.0	43
8	Insights into the differential toxicological and antioxidant effects of 4-phenylchalcogenil-7-chloroquinolines in Caenorhabditis elegans. Free Radical Biology and Medicine, 2017, 110, 133-141.	2.9	39
9	Untangling the Manganese-α-Synuclein Web. Frontiers in Neuroscience, 2016, 10, 364.	2.8	34
10	Region-specific alterations of AMPA receptor phosphorylation and signaling pathways in the pilocarpine model of epilepsy. Neurochemistry International, 2015, 87, 22-33.	3.8	33
11	Enhancement of memory consolidation by the histone deacetylase inhibitor sodium butyrate in aged rats. Neuroscience Letters, 2015, 594, 76-81.	2.1	28
12	Pathogenic Mycobacterium bovis strains differ in their ability to modulate the proinflammatory activation phenotype of macrophages. BMC Microbiology, 2012, 12, 166.	3.3	27
13	Role of Caenorhabditis elegans AKT-1/2 and SGK-1 in Manganese Toxicity. Neurotoxicity Research, 2018, 34, 584-596.	2.7	26
14	Null allele mutants of trt-1 , the catalytic subunit of telomerase in Caenorhabditis elegans , are less sensitive to Mn-induced toxicity and DAergic degeneration. NeuroToxicology, 2016, 57, 54-60.	3.0	25
15	Combined exposure to methylmercury and manganese during L1 larval stage causes motor dysfunction, cholinergic and monoaminergic up-regulation and oxidative stress in L4 Caenorhabditis elegans. Toxicology, 2019, 411, 154-162.	4.2	24
16	Guarana (Paullinia cupana Mart.) attenuates methylmercury-induced toxicity in Caenorhabditis elegans. Toxicology Research, 2016, 5, 1629-1638.	2.1	20
17	Glutamatergic system and mTOR-signaling pathway participate in the antidepressant-like effect of inosine in the tail suspension test. Journal of Neural Transmission, 2017, 124, 1227-1237.	2.8	18
18	Vatairea macrocarpa Lectin (VML) Induces Depressive-like Behavior and Expression of Neuroinflammatory Markers in Mice. Neurochemical Research, 2013, 38, 2375-2384.	3.3	16

TANARA V PERES

#	Article	IF	CITATIONS
19	Methylmercury Affects the Expression of Hypothalamic Neuropeptides That Control Body Weight in C57BL/6J Mice. Toxicological Sciences, 2018, 163, 557-568.	3.1	16
20	Lectin from Canavalia brasiliensis (ConBr) protects hippocampal slices against glutamate neurotoxicity in a manner dependent of PI3K/Akt pathway. Neurochemistry International, 2013, 62, 836-842.	3.8	15
21	<i>In Vitro</i> Manganese Exposure Disrupts MAPK Signaling Pathways in Striatal and Hippocampal Slices from Immature Rats. BioMed Research International, 2013, 2013, 1-12.	1.9	13
22	Variant vicilins from a resistant Vigna unguiculata lineage (IT81D-1053) accumulate inside Callosobruchus maculatus larval midgut epithelium. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2014, 168, 45-52.	1.6	13
23	Triclosan induces PC12 cells injury is accompanied by inhibition of AKT/mTOR and activation of p38 pathway. NeuroToxicology, 2019, 74, 221-229.	3.0	13
24	Effects of Pentylenetetrazole Kindling on Mitogen-Activated Protein Kinases Levels in Neocortex and Hippocampus of Mice. Neurochemical Research, 2014, 39, 2492-2500.	3.3	11
25	Tyrosine hydroxylase regulation in adult rat striatum following short-term neonatal exposure to manganese. Metallomics, 2016, 8, 597-604.	2.4	11
26	Sodium p-Aminosalicylic Acid Reverses Sub-Chronic Manganese-Induced Impairments of Spatial Learning and Memory Abilities in Rats, but Fails to Restore γ-Aminobutyric Acid Levels. International Journal of Environmental Research and Public Health, 2017, 14, 400.	2.6	9
27	Nutritional, Genetic, and Molecular Aspects of Manganese Intoxication. , 2017, , 367-376.		5
28	Small Molecule Modifiers of In Vitro Manganese Transport Alter Toxicity In Vivo. Biological Trace Element Research, 2019, 188, 127-134.	3.5	5
29	Conjugates of desferrioxamine and aromatic amines improve markers of iron-dependent neurotoxicity. BioMetals, 2021, 34, 259-275.	4.1	5
30	Modulation of Brain Glutathione Reductase and Peroxiredoxin 2 by α-Tocopheryl Phosphate. Cellular and Molecular Neurobiology, 2016, 36, 1015-1022.	3.3	4
31	Cadmium Neurotoxicity and Its Role in Brain Disorders. , 2012, , 751-766.		4
32	Brain <scp>MAPK</scp> s Levels are Differentially Associated with Seizures Threshold and Severity Progression in Pentylenetetrazoleâ€Kindled Mice. CNS Neuroscience and Therapeutics, 2013, 19, 726-729.	3.9	2