
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7276108/publications.pdf Version: 2024-02-01

HALHONG HAO

#	Article	IF	CITATIONS
1	Antibiotic alternatives: the substitution of antibiotics in animal husbandry?. Frontiers in Microbiology, 2014, 5, 217.	1.5	425
2	Benefits and risks of antimicrobial use in food-producing animals. Frontiers in Microbiology, 2014, 5, 288.	1.5	256
3	JAK/STAT Pathway Plays a Critical Role in the Proinflammatory Gene Expression and Apoptosis of RAW264.7 Cells Induced by Trichothecenes as DON and T-2 Toxin. Toxicological Sciences, 2012, 127, 412-424.	1.4	108
4	Antimicrobial Drugs in Fighting against Antimicrobial Resistance. Frontiers in Microbiology, 2016, 7, 470.	1.5	100
5	Selection and dissemination of antimicrobial resistance in Agri-food production. Antimicrobial Resistance and Infection Control, 2019, 8, 158.	1.5	97
6	Contribution of CmeG to antibiotic and oxidative stress resistance in Campylobacter jejuni. Journal of Antimicrobial Chemotherapy, 2011, 66, 79-85.	1.3	82
7	Antibacterial action of quinolones: From target to network. European Journal of Medicinal Chemistry, 2013, 66, 555-562.	2.6	82
8	Quinoxaline 1,4-di-N-Oxides: Biological Activities and Mechanisms of Actions. Frontiers in Pharmacology, 2016, 7, 64.	1.6	80
9	Serotypes and antimicrobial susceptibility of Salmonella spp. isolated from farm animals in China. Frontiers in Microbiology, 2015, 6, 602.	1.5	69
10	CRISPR-cas system: biological function in microbes and its use to treat antimicrobial resistant pathogens. Annals of Clinical Microbiology and Antimicrobials, 2019, 18, 21.	1.7	63
11	Bacteria vs. Bacteriophages: Parallel Evolution of Immune Arsenals. Frontiers in Microbiology, 2016, 7, 1292.	1.5	55
12	Systematic and Molecular Basis of the Antibacterial Action of Quinoxaline 1,4-Di-N-Oxides against Escherichia coli. PLoS ONE, 2015, 10, e0136450.	1.1	55
13	Deoxidation Rates Play a Critical Role in DNA Damage Mediated by Important Synthetic Drugs, Quinoxaline 1,4-Dioxides. Chemical Research in Toxicology, 2015, 28, 470-481.	1.7	52
14	The Risk of Some Veterinary Antimicrobial Agents on Public Health Associated with Antimicrobial Resistance and their Molecular Basis. Frontiers in Microbiology, 2016, 7, 1626.	1.5	52
15	Bacterial Multidrug Efflux Pumps at the Frontline of Antimicrobial Resistance: An Overview. Antibiotics, 2022, 11, 520.	1.5	47
16	23S rRNA Mutation A2074C Conferring High-Level Macrolide Resistance and Fitness Cost in <i>Campylobacter jejuni</i> . Microbial Drug Resistance, 2009, 15, 239-244.	0.9	46
17	Nitric oxide (NO)-mediated mitochondrial damage plays a critical role in T-2 toxin-induced apoptosis and growth hormone deficiency in rat anterior pituitary GH3 cells. Food and Chemical Toxicology, 2017, 102, 11-23.	1.8	45
18	New methodologies in screening of antibiotic residues in animal-derived foods: Biosensors. Talanta, 2017, 175, 435-442.	2.9	44

#	Article	IF	CITATIONS
19	Further investigations into the genotoxicity of quinoxaline-di-N-oxides and their primary metabolites. Food and Chemical Toxicology, 2016, 93, 145-157.	1.8	40
20	Development of a direct ELISA based on carboxy-terminal of penicillin-binding protein BlaR for the detection of β-lactam antibiotics in foods. Analytical and Bioanalytical Chemistry, 2013, 405, 8925-8933.	1.9	39
21	The Involvement of the Cas9 Gene in Virulence of Campylobacter jejuni. Frontiers in Cellular and Infection Microbiology, 2018, 8, 285.	1.8	39
22	Comparative virulence studies and transcriptome analysis of Staphylococcus aureus strains isolated from animals. Scientific Reports, 2016, 6, 35442.	1.6	36
23	The Epidemiologic and Pharmacodynamic Cutoff Values of Tilmicosin against Haemophilus parasuis. Frontiers in Microbiology, 2016, 7, 385.	1.5	35
24	Mutational and Transcriptomic Changes Involved in the Development of Macrolide Resistance in Campylobacter jejuni. Antimicrobial Agents and Chemotherapy, 2013, 57, 1369-1378.	1.4	34
25	Microbial Shifts in the Intestinal Microbiota of Salmonella Infected Chickens in Response to Enrofloxacin. Frontiers in Microbiology, 2017, 8, 1711.	1.5	34
26	Key genetic elements and regulation systems in methicillin-resistant <i>Staphylococcus aureus</i> . Future Microbiology, 2012, 7, 1315-1329.	1.0	33
27	Survival and Evolution of CRISPR–Cas System in Prokaryotes and Its Applications. Frontiers in Immunology, 2016, 7, 375.	2.2	33
28	Integration of PK/PD for dose optimization of Cefquinome against Staphylococcus aureus causing septicemia in cattle. Frontiers in Microbiology, 2015, 6, 588.	1.5	32
29	Application of PK/PD Modeling in Veterinary Field: Dose Optimization and Drug Resistance Prediction. BioMed Research International, 2016, 2016, 1-12.	0.9	31
30	PKA/CREB and NF-κB pathway regulates AKNA transcription: A novel insight into T-2 toxin-induced inflammation and GH deficiency in GH3 cells. Toxicology, 2017, 392, 81-95.	2.0	31
31	The Role of RamA on the Development of Ciprofloxacin Resistance in Salmonella enterica Serovar Typhimurium. PLoS ONE, 2011, 6, e23471.	1.1	30
32	Pharmacokinetic and Pharmacodynamic Integration and Modeling of Enrofloxacin in Swine for Escherichia coli. Frontiers in Microbiology, 2016, 7, 36.	1.5	30
33	The CRISPR-cas system promotes antimicrobial resistance in <i>Campylobacter jejuni</i> . Future Microbiology, 2018, 13, 1757-1774.	1.0	28
34	High Risk of Embryo-Fetal Toxicity: Placental Transfer of T-2 Toxin and Its Major Metabolite HT-2 Toxin in BeWo Cells. Toxicological Sciences, 2014, 137, 168-178.	1.4	26
35	Pharmacokinetic–Pharmacodynamic Modeling of Enrofloxacin Against Escherichia coli in Broilers. Frontiers in Veterinary Science, 2016, 2, 80.	0.9	25
36	The effects of different enrofloxacin dosages on clinical efficacy and resistance development in chickens experimentally infected with Salmonella Typhimurium. Scientific Reports, 2017, 7, 11676.	1.6	24

#	Article	IF	CITATIONS
37	Mechanisms of Antibacterial Action of Quinoxaline 1,4-di-N-oxides against Clostridium perfringens and Brachyspira hyodysenteriae. Frontiers in Microbiology, 2016, 7, 1948.	1.5	23
38	Synthesis, 3D-QSAR analysis and biological evaluation of quinoxaline 1,4-di-N-oxide derivatives as antituberculosis agents. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 4146-4153.	1.0	23
39	In vitro antimicrobial activities of animal-used quinoxaline 1,4-di-N-oxides against mycobacteria, mycoplasma and fungi. BMC Veterinary Research, 2016, 12, 186.	0.7	21
40	Development of a novel genetically modified bioluminescent-bacteria-based assay for detection of fluoroquinolones in animal-derived foods. Analytical and Bioanalytical Chemistry, 2014, 406, 7899-7910.	1.9	18
41	Intracellular delivery, accumulation, and discrepancy in antibacterial activity of four enrofloxacin-loaded fatty acid solid lipid nanoparticles. Colloids and Surfaces B: Biointerfaces, 2020, 194, 111196.	2.5	18
42	Impact of cyadox on human colonic microflora in chemostat models. Regulatory Toxicology and Pharmacology, 2013, 67, 335-343.	1.3	17
43	Phage Products for Fighting Antimicrobial Resistance. Microorganisms, 2022, 10, 1324.	1.6	17
44	Assessment of thirteen-week subchronic oral toxicity of cyadox in Beagle dogs. Regulatory Toxicology and Pharmacology, 2015, 73, 652-659.	1.3	16
45	Evaluation of the safety of primary metabolites of cyadox: Acute and sub-chronic toxicology studies and genotoxicity assessment. Regulatory Toxicology and Pharmacology, 2016, 74, 123-136.	1.3	16
46	Virulence and transcriptome profile of multidrug-resistant Escherichia coli from chicken. Scientific Reports, 2017, 7, 8335.	1.6	15
47	The Evolution of Fluoroquinolone Resistance in Salmonella under Exposure to Sub-Inhibitory Concentration of Enrofloxacin. International Journal of Molecular Sciences, 2021, 22, 12218.	1.8	15
48	Applications of new functions for inducing host defense peptides and synergy sterilization of medium chain fatty acids in substituting in-feed antibiotics. Journal of Functional Foods, 2019, 52, 348-359.	1.6	14
49	Development of Quinoxaline 1, 4-Dioxides Resistance in Escherichia coli and Molecular Change under Resistance Selection. PLoS ONE, 2012, 7, e43322.	1.1	12
50	Virulence and Genomic Feature of Multidrug Resistant Campylobacter jejuni Isolated from Broiler Chicken. Frontiers in Microbiology, 2016, 7, 1605.	1.5	12
51	Quantification of Mutated Alleles of 23S rRNA in Macrolide-Resistant Campylobacter by TaqMan Real-Time Polymerase Chain Reaction. Foodborne Pathogens and Disease, 2010, 7, 43-49.	0.8	11
52	MiR-155-5p plays as a "janus―in the expression of inflammatory cytokines induced by T-2 toxin. Food and Chemical Toxicology, 2020, 140, 111258.	1.8	11
53	Mechanism of Porcine Liver Xanthine Oxidoreductase Mediated N-Oxide Reduction of Cyadox as Revealed by Docking and Mutagenesis Studies. PLoS ONE, 2013, 8, e73912.	1.1	11
54	The physiologic and phenotypic alterations due to macrolide exposure in Campylobacter jejuni. International Journal of Food Microbiology, 2011, 151, 52-61.	2.1	10

HAIHONG HAO

#	Article	IF	CITATIONS
55	Inhibitors targeting on cell wall biosynthesis pathway of MRSA. Molecular BioSystems, 2012, 8, 2828.	2.9	10
56	Development of an enzyme-linked-receptor assay based on Syrian hamster β2-adrenergic receptor for detection of β-agonists. Analytical Biochemistry, 2014, 459, 18-23.	1.1	10
57	Cj0440c Affects Flagella Formation and In Vivo Colonization of Erythromycin-Susceptible and -Resistant Campylobacter jejuni. Frontiers in Microbiology, 2017, 8, 729.	1.5	10
58	Susceptibility Breakpoint for Enrofloxacin against Swine Salmonella spp. Journal of Clinical Microbiology, 2013, 51, 3070-3072.	1.8	9
59	Structure-Function Analysis of Porcine Cytochrome P450 3A29 in the Hydroxylation of T-2 Toxin as Revealed by Docking and Mutagenesis Studies. PLoS ONE, 2014, 9, e106769.	1.1	9
60	Plasmid-mediated multidrug resistance and virulence in an avian pathogenic Escherichia coli strain isolated in China. Journal of Global Antimicrobial Resistance, 2014, 2, 57-58.	0.9	8
61	Microbiological toxicity of tilmicosin on human colonic microflora in chemostats. Regulatory Toxicology and Pharmacology, 2015, 73, 201-208.	1.3	8
62	The antibacterial activities of aditoprim and its efficacy in the treatment of swine streptococcosis. Scientific Reports, 2017, 7, 41370.	1.6	8
63	Cj1199 Affect the Development of Erythromycin Resistance in Campylobacter jejuni through Regulation of Leucine Biosynthesis. Frontiers in Microbiology, 2017, 8, 16.	1.5	8
64	Resistance and Virulence Mechanisms of <i>Escherichia coli</i> Selected by Enrofloxacin in Chicken. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	8
65	Identification of Campylobacter jejuni and determination of point mutations associated with macrolide resistance using a multiplex Taq Man MGB real-time PCR. Journal of Applied Microbiology, 2015, 118, 1418-1425.	1.4	7
66	Pharmacokinetic and pharmacodynamic integration and modeling of acetylkitasamycin in swine for <i>Clostridium perfringens</i> . Journal of Veterinary Pharmacology and Therapeutics, 2017, 40, 641-655.	0.6	7
67	Signaling pathways involved in the expression of SZNF and the target genes binding with SZNF related to cyadox. Biomedicine and Pharmacotherapy, 2018, 108, 1879-1893.	2.5	7
68	Optimal regimens based on PK/PD cutoff evaluation of ceftiofur against Actinobacillus pleuropneumoniae in swine. BMC Veterinary Research, 2020, 16, 366.	0.7	7
69	Rational Use of Danofloxacin for Treatment of Mycoplasma gallisepticum in Chickens Based on the Clinical Breakpoint and Lung Microbiota Shift. Antibiotics, 2022, 11, 403.	1.5	7
70	Effect of Tulathromycin on Colonization Resistance, Antimicrobial Resistance, and Virulence of Human Gut Microbiota in Chemostats. Frontiers in Microbiology, 2016, 7, 477.	1.5	5
71	Exploration of Clinical Breakpoint of Danofloxacin for Glaesserella parasuis in Plasma and in PELF. Antibiotics, 2021, 10, 808.	1.5	5
72	Prudent Use of Tylosin for Treatment of Mycoplasma gallisepticum Based on Its Clinical Breakpoint and Lung Microbiota Shift. Frontiers in Microbiology, 2021, 12, 712473.	1.5	4

#	Article	IF	CITATIONS
73	Effects of Acute and Chronic Exposure to Residual Level Erythromycin on Human Intestinal Epithelium Cell Permeability and Cytotoxicity. Microorganisms, 2019, 7, 325.	1.6	3
74	Evidence for Establishing the Clinical Breakpoint of Cefquinome against Haemophilus Parasuis in China. Pathogens, 2021, 10, 105.	1.2	3
75	The Spectrum of Antimicrobial Activity of Cyadox against Pathogens Collected from Pigs, Chicken, and Fish in China. Antibiotics, 2021, 10, 153.	1.5	2
76	Determination of Susceptibility Breakpoint for Cefquinome against Streptococcus suis in Pigs. Antibiotics, 2021, 10, 958.	1.5	2
77	Coexistence of virulence and \hat{l}^2 -lactamase genes in avian pathogenic Escherichia coli. Microbial Pathogenesis, 2022, 163, 105389.	1.3	2
78	Clinical Breakpoint of Apramycin to Swine Salmonella and Its Effect on Ileum Flora. International Journal of Molecular Sciences, 2022, 23, 1424.	1.8	1
79	RNA-seq-based transcriptome analysis of a cefquinome-treated, highly resistant, and virulent MRSA strain. Microbial Pathogenesis, 2021, 160, 105201.	1.3	0
80	Optimal Regimens and Clinical Breakpoint of Avilamycin Against Clostridium perfringens in Swine Based on PK-PD Study. Frontiers in Pharmacology, 2022, 13, 769539.	1.6	0
81	PK-PD Modeling and Optimal Dosing Regimen of Acetylkitasamycin against Streptococcus suis in Piglets. Antibiotics, 2022, 11, 283.	1.5	0