Amir Masoud Rezadoust

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7275421/publications.pdf

Version: 2024-02-01

31 392 12 18 papers citations h-index g-index

31 31 31 450 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	An experimental investigation on infusion time and strength of fiber metal laminates made by vacuum infusion process. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2021, 235, 1800-1808.	1.1	4
2	Morphology and mechanical properties of poly (acrylonitrileâ€butadieneâ€styrene)/multiâ€walled carbon nanotubes nanocomposite specimens prepared by fused deposition modeling. Polymer Composites, 2021, 42, 342-352.	4.6	9
3	Determining process-window for manufacturing of continuous carbon fiber-reinforced composite Using 3D-printing. Materials and Manufacturing Processes, 2021, 36, 409-418.	4.7	37
4	Response surface methodology optimization of electrospinning process parameters to fabricate aligned polyvinyl butyral nanofibers for interlaminar toughening of phenolic-based composite laminates. Journal of Industrial Textiles, 2020, 49, 858-874.	2.4	12
5	Modeling and optimization of electrospinning conditions of PVB nanofiber by RSM and PSO-LSSVM models for improved interlaminar fracture toughness of laminated composites. Journal of Composite Materials, 2020, 54, 363-378.	2.4	13
6	Improvement of interlaminar fracture toughness of phenolic laminates interleaved with electrospun polyvinyl butyral nanofibers. Theoretical and Applied Fracture Mechanics, 2020, 105, 102406.	4.7	10
7	Tailoring physico-mechanical properties and rheological behavior of ABS filaments for FDM via blending with SEBS TPE. Rapid Prototyping Journal, 2020, 26, 1687-1700.	3.2	15
8	Bio-resourced furan resin as a sustainable alternative to petroleum-based phenolic resin for making GFR polymer composites. Iranian Polymer Journal (English Edition), 2020, 29, 287-299.	2.4	14
9	An investigation on the effect of polyvinyl butyral interlayer forms on the fracture toughness of glass reinforced phenolic laminates. Thin-Walled Structures, 2020, 151, 106724.	5.3	11
10	Effect of nanofiber diameter and arrangement on fracture toughness of out of autoclave glass/phenolic composites - Experimental and numerical study. Thin-Walled Structures, 2019, 143, 106251.	5. 3	17
11	Effects of a Nano-Interleave on the Interlaminar Fracture Toughness for Autoclave and Out-of-Autoclave Processed Glass/Phenolic Composites. International Journal of Applied Mechanics, 2019, 11, 1950047.	2.2	3
12	Physicoâ€mechanical and thermal properties of date palm fiber/phenolic resin composites. Polymer Composites, 2019, 40, 3657-3665.	4.6	9
13	Effect of processing parameters on the fabrication of fiber metal laminates by vacuum infusion process. Polymer Composites, 2019, 40, 4167-4174.	4.6	7
14	The outstanding effect of nanomat geometry on the interlaminar fracture toughness behavior out of autoclave made glass/phenolic composites under mode-I loading. Engineering Fracture Mechanics, 2019, 205, 108-119.	4.3	12
15	Effect of Hybridization of Carboxylâ€Terminated Acrylonitrile Butadiene Liquid Rubber and Alumina Nanoparticles on the Fracture Toughness of Epoxy Nanocomposites. Polymer Composites, 2019, 40, 2700-2711.	4.6	11
16	The experimental and numerical study on the effect of PVB nanofiber mat thickness on interlaminar fracture toughness of glass/phenolic composites. Engineering Fracture Mechanics, 2018, 194, 145-153.	4.3	25
17	Tunable effect of polyvinyl butyral nanofiber veil on fracture toughness of glass reinforced phenolic composites manufactured with out of autoclave method. Polymer Testing, 2018, 71, 255-261.	4.8	14
18	Octagonal auxetic metamaterials with hyperelastic properties for large compressive deformation. International Journal of Mechanical Sciences, 2018, 145, 96-105.	6.7	56

#	Article	lF	CITATIONS
19	Comparison of Physical, Thermal, and Thermomechanical Properties of Cotton/Epoxy Composite and Cotton/Vinyl Ester Composite Inhibitors. Propellants, Explosives, Pyrotechnics, 2016, 41, 321-326.	1.6	4
20	Effect of through-the-thickness areal density and yarn fineness on the mechanical performance of three-dimensional carbon–phenolic composites. Journal of Reinforced Plastics and Composites, 2016, 35, 1447-1459.	3.1	13
21	Thermal, Dynamic Mechanical, and Barrier Studies of Potassium Permanganate-LDPE Nanocomposites. Polymer-Plastics Technology and Engineering, 2013, 52, 126-132.	1.9	15
22	Effect of the nanoclay types on the rheological response of unsaturated polyester–clay nanocomposites. Polymer Engineering and Science, 2013, 53, 809-817.	3.1	8
23	Thermal and mechanical behavior of cotton/vinyl ester composites: Effects of some flame retardants and fiber treatment. Journal of Reinforced Plastics and Composites, 2013, 32, 681-688.	3.1	31
24	Rheological Behaviour of Styrene-Free Unsaturated Polyester-Clay Nanocomposites. Polymers and Polymer Composites, 2013, 21, 101-110.	1.9	2
25	Studying the Thermal Properties of a Cotton/Epoxy Composite Inhibitor. Propellants, Explosives, Pyrotechnics, 2012, 37, 569-574.	1.6	3
26	Effect of Intertube Adhesion on Mechanical Properties of Tubular Cell Polypropylene Honeycombs. Polymers and Polymer Composites, 2009, 17, 513-519.	1.9	0
27	Bond performance of FRP rebars with various surface deformations in reinforced concrete. Polymer Composites, 2009, 30, 576-582.	4.6	17
28	Crush Behavior of Conical Composite Shells: Effect of Cone Angle and Diameter/Wall Thickness Ratio. Polymer-Plastics Technology and Engineering, 2008, 47, 147-151.	1.9	10
29	Study of Fiber Breakage and Length Distribution During Compounding Glass-NBR-Phenolic Composites. Polymer-Plastics Technology and Engineering, 2005, 44, 63-71.	1.9	1
30	Preparation of glass reinforced NBR–phenolic composite: study of fibre length distribution and burning properties. Plastics, Rubber and Composites, 2004, 33, 107-112.	2.0	1
31	Evaluation of Two-Roll Mill Method for Preparing Short Glass Fibre Reinforced Nbr-Phenolic Composites. Polymers and Polymer Composites, 2001, 9, 403-408.	1.9	8