Jude F Mitchell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7275261/publications.pdf

Version: 2024-02-01

39 papers 4,519 citations

393982 19 h-index 30 g-index

44 all docs 44 docs citations

times ranked

44

4490 citing authors

#	Article	IF	CITATIONS
1	Neural circuits for pre-saccadic attention in the marmoset monkey. Journal of Vision, 2021, 21, 49.	0.1	O
2	Foveal remapping of motion in area MT of the marmoset monkey. Journal of Vision, 2021, 21, 2638.	0.1	2
3	Motion Perception in the Common Marmoset. Cerebral Cortex, 2020, 30, 2659-2673.	1.6	10
4	Beyond fixation: foveal receptive field estimation in freely viewing primates. Journal of Vision, 2020, 20, 1470.	0.1	1
5	Enhanced neural tuning in middle temporal area (MT) of the marmoset monkey during pre-saccadic attention. Journal of Vision, 2020, 20, 758.	0.1	O
6	Presaccadic motion integration drives a predictive postsaccadic following response. Journal of Vision, 2019, 19, 12.	0.1	5
7	The Marmoset as a Model for Visual Neuroscience. , 2019, , 377-413.		4
8	Pre-saccadic attention to motion initiates predictive ocular following. Journal of Vision, 2019, 19, 303c.	0.1	0
9	V1 neurons tuned for high spatial frequencies show pre-saccadic enhancement. Journal of Vision, 2019, 19, 254a.	0.1	0
10	Dissociation between perception and predictive oculomotor behavior in retrained cortically blind fields. Journal of Vision, 2019, 19, 32.	0.1	0
11	Pre-saccadic motion integration drives pursuit for saccades to motion apertures Journal of Vision, 2018, 18, 1007.	0.1	0
12	Psychophysical measurement of marmoset acuity and myopia. Developmental Neurobiology, 2017, 77, 300-313.	1.5	27
13	Optogenetic manipulation of neural circuits in awake marmosets. Journal of Neurophysiology, 2016, 116, 1286-1294.	0.9	50
14	Marmosets: A Neuroscientific Model of Human Social Behavior. Neuron, 2016, 90, 219-233.	3.8	260
15	Neurons in Macaque Area V4 Are Tuned for Complex Spatio-Temporal Patterns. Neuron, 2016, 91, 920-930.	3.8	18
16	Uterine Rupture in a Common Marmoset (Callithrix jacchus). Comparative Medicine, 2016, 66, 254-8.	0.4	2
17	The marmoset monkey as a model for visual neuroscience. Neuroscience Research, 2015, 93, 20-46.	1.0	189
18	Motion dependence of smooth pursuit eye movements in the marmoset. Journal of Neurophysiology, 2015, 113, 3954-3960.	0.9	44

#	Article	IF	Citations
19	Vocal turn-taking in a non-human primate is learned during ontogeny. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150069.	1.2	88
20	Brains, Genes, and Primates. Neuron, 2015, 86, 617-631.	3.8	231
21	Active Vision in Marmosets: A Model System for Visual Neuroscience. Journal of Neuroscience, 2014, 34, 1183-1194.	1.7	153
22	Correction of refractive errors in rhesus macaques (Macaca mulatta) involved in visual research. Comparative Medicine, 2014, 64, 300-8.	0.4	2
23	Attention-dependent reductions in burstiness and action-potential height in macaque area V4. Nature Neuroscience, 2013, 16, 1125-1131.	7.1	28
24	The Fine Structure of Shape Tuning in Area V4. Neuron, 2013, 78, 1102-1115.	3.8	77
25	Attention Influences Single Unit and Local Field Potential Response Latencies in Visual Cortical Area V4. Journal of Neuroscience, 2012, 32, 16040-16050.	1.7	57
26	Attentional Modulation of Firing Rate Varies with Burstiness across Putative Pyramidal Neurons in Macaque Visual Area V4. Journal of Neuroscience, 2011, 31, 10983-10992.	1.7	20
27	Object-based attention to one of two superimposed surfaces alters responses in human early visual cortex. Journal of Neurophysiology, 2011, 105, 1258-1265.	0.9	32
28	Spatial Attention Modulates Center-Surround Interactions in Macaque Visual Area V4. Neuron, 2009, 61, 952-963.	3.8	139
29	Spatial Attention Decorrelates Intrinsic Activity Fluctuations in Macaque Area V4. Neuron, 2009, 63, 879-888.	3.8	645
30	ERP evidence that surface-based attention biases interocular competition during rivalry. Journal of Vision, 2008, 8, 18.	0.1	10
31	Differential Attention-Dependent Response Modulation across Cell Classes in Macaque Visual Area V4. Neuron, 2007, 55, 131-141.	3.8	594
32	Interacting competitive selection in attention and binocular rivalry. Progress in Brain Research, 2005, 149, 227-234.	0.9	14
33	Exogenous attentional selection of transparent superimposed surfaces modulates early event-related potentials. Vision Research, 2005, 45, 3004-3014.	0.7	59
34	Object-based attention determines dominance in binocular rivalry. Nature, 2004, 429, 410-413.	13.7	208
35	Attentional selection of superimposed surfaces cannot be explained by modulation of the gain of color channels. Vision Research, 2003, 43, 1323-1328.	0.7	27
36	Sequential memory-guided saccades and target selection: a neural model of the frontal eye fields. Vision Research, 2003, 43, 2669-2695.	0.7	18

JUDE F MITCHELL

#	Article	IF	CITATIONS
37	A model of visual–spatial memory across saccades. Vision Research, 2001, 41, 1575-1592.	0.7	13
38	Stability, Precision, and Near-24-Hour Period of the Human Circadian Pacemaker. Science, 1999, 284, 2177-2181.	6.0	1,477
39	Perceptual restoration fails to recover unconscious processing for smooth eye movements after occipital stroke. ELife, $0,11,.$	2.8	2