
## Hamed H Saber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7274967/publications.pdf Version: 2024-02-01



HAMED H SARED

| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Practical correlation for thermal resistance of 45° sloped-enclosed airspaces with upward heat flow for building applications. Journal of Building Physics, 2022, 45, 649-674.                                                        | 2.4 | 5         |
| 2  | Hygrothermal performance of cool roofs with reflective coating material subjected to hot, humid and dusty climate. Journal of Building Physics, 2022, 45, 457-481.                                                                    | 2.4 | 4         |
| 3  | Thermal Resistance of 30° Sloped, Enclosed Airspaces Subjected to Upward Heat Flow. Sustainability, 2022, 14, 3260.                                                                                                                   | 3.2 | Ο         |
| 4  | Developing a model for predicting optimum daily tilt angle of a PV solar system at different geometric, physical and dynamic parameters. Advances in Building Energy Research, 2021, 15, 179-198.                                     | 2.3 | 10        |
| 5  | Investigating the Effect of Dust Accumulation on the Solar Reflectivity of Coating Materials for Cool Roof Applications. Energies, 2021, 14, 445.                                                                                     | 3.1 | 10        |
| 6  | Experimental characterization of reflective coating material for cool roofs in hot, humid and dusty climate. Energy and Buildings, 2021, 242, 110993.                                                                                 | 6.7 | 24        |
| 7  | Assessing the Energy, Indoor Air Quality, and Moisture Performance for a Three-Story Building Using<br>an Integrated Model, Part Two: Integrating the Indoor Air Quality, Moisture, and Thermal Comfort.<br>Energies, 2021, 14, 4915. | 3.1 | 12        |
| 8  | Assessing the Energy, Indoor Air Quality, and Moisture Performance for a Three-Story Building Using<br>an Integrated Model, Part Three: Development of Integrated Model and Applications. Energies, 2021, 14,<br>5648.                | 3.1 | 5         |
| 9  | Sustainable Self-Cooling Framework for Cooling Computer Chip Hotspots Using Thermoelectric Modules. Sustainability, 2021, 13, 12522.                                                                                                  | 3.2 | 2         |
| 10 | Advanced Modeling of Enclosed Airspaces to Determine Thermal Resistance for Building Applications.<br>Energies, 2021, 14, 7772.                                                                                                       | 3.1 | 5         |
| 11 | Experimental investigation of using thermoelectric cooling for computer chips. Journal of King Saud<br>University, Engineering Sciences, 2020, 32, 321-329.                                                                           | 2.0 | 8         |
| 12 | Effective R-value of enclosed reflective space for different building applications. Journal of Building Physics, 2020, 43, 398-427.                                                                                                   | 2.4 | 14        |
| 13 | Impact of reflective roofs on the overall energy savings of whole buildings. E3S Web of Conferences, 2020, 172, 25008.                                                                                                                | 0.5 | 2         |
| 14 | 3D Numerical Modeling for Assessing the Energy Performance of Single-Zone Buildings with and Without Phase Change Materials. , 2020, , 419-438.                                                                                       |     | 2         |
| 15 | Long-Term Energy and Moisture Performance of Reflective and Non-reflective Roofing Systems with and Without Phase Change Materials Under Kuwaiti Climates. , 2020, , 453-482.                                                         |     | 3         |
| 16 | Energy Performance of Cool Roofs Followed by Development of Practical Design Tool. Frontiers in<br>Energy Research, 2019, 7, .                                                                                                        | 2.3 | 14        |
| 17 | Hygrothermal Performance of Cool Roofs Subjected to Saudi Climates. Frontiers in Energy Research, 2019, 7, .                                                                                                                          | 2.3 | 17        |
| 18 | Performance optimization of cascaded and non-cascaded thermoelectric devices for cooling computer chips. Energy Conversion and Management, 2019, 191, 174-192.                                                                        | 9.2 | 48        |

HAMED H SABER

| #  | Article                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Assessing the Energy and Indoor Air Quality Performance for a Three-Story Building Using an Integrated Model, Part One: The Need for Integration. Energies, 2019, 12, 4775.      | 3.1 | 17        |
| 20 | Practical correlation for thermal resistance of low-sloped enclosed airspaces with downward heat flow for building applications. HVAC and R Research, 2014, 20, 92-112.          | 0.6 | 6         |
| 21 | Practical correlation for thermal resistance of horizontal enclosed airspaces with downward heat flow for building applications. Journal of Building Physics, 2014, 37, 403-435. | 2.4 | 11        |
| 22 | Practical correlation for thermal resistance of 45° sloped enclosed airspaces with downward heat flow for building applications. Building and Environment, 2013, 65, 154-169.    | 6.9 | 9         |
| 23 | Practical correlations for thermal resistance of horizontal enclosed airspaces with upward heat flow for building applications. Building and Environment, 2013, 61, 169-187.     | 6.9 | 12        |
| 24 | Practical correlations for the thermal resistance of vertical enclosed airspaces for building applications. Building and Environment, 2013, 59, 379-396.                         | 6.9 | 16        |
| 25 | Thermal performance of wall assemblies with low emissivity. Journal of Building Physics, 2013, 36, 308-329.                                                                      | 2.4 | 15        |
| 26 | 3D heat and air transport model for predicting the thermal resistances of insulated wall assemblies.<br>Journal of Building Performance Simulation, 2012, 5, 75-91.              | 2.0 | 30        |
| 27 | Thermal response of basement wall systems with low-emissivity material and furred airspace. Journal of Building Physics, 2012, 35, 353-371.                                      | 2.4 | 26        |
| 28 | Numerical modeling and experimental investigations of thermal performance of reflective insulations. Journal of Building Physics, 2012, 36, 163-177.                             | 2.4 | 21        |
| 29 | Long-term hygrothermal performance of white and black roofs in North American climates. Building and Environment, 2012, 50, 141-154.                                             | 6.9 | 35        |
| 30 | Investigation of thermal performance of reflective insulations for different applications. Building and Environment, 2012, 52, 32-44.                                            | 6.9 | 46        |
| 31 | Thermal analysis of above-grade wall assembly with low emissivity materials and furred airspace.<br>Building and Environment, 2011, 46, 1403-1414.                               | 6.9 | 39        |
| 32 | Composite Spreader for Cooling Computer Chip With Non-Uniform Heat Dissipation. IEEE Transactions on Components and Packaging Technologies, 2008, 31, 165-172.                   | 1.3 | 15        |
| 33 | Effects of metallic coatings on the performance of skutterudite-based segmented unicouples. Energy<br>Conversion and Management, 2007, 48, 1383-1400.                            | 9.2 | 34        |
| 34 | Tests results of skutterudite based thermoelectric unicouples. Energy Conversion and Management, 2007, 48, 555-567.                                                              | 9.2 | 49        |
| 35 | Efficient spreaders for cooling high-power computer chips. Applied Thermal Engineering, 2007, 27, 1072-1088.                                                                     | 6.0 | 12        |
| 36 | Tests results and performance comparisons of coated and un-coated skutterudite based segmented unicouples. Energy Conversion and Management, 2006, 47, 174-200.                  | 9.2 | 102       |

HAMED H SABER

| #  | Article                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Thermal and performance analyses of efficient radioisotope power systems. Energy Conversion and Management, 2006, 47, 2290-2307.                           | 9.2 | 15        |
| 38 | Performance analysis of cascaded thermoelectric converters for advanced radioisotope power systems. Energy Conversion and Management, 2005, 46, 1083-1105. | 9.2 | 39        |
| 39 | High efficiency segmented thermoelectric unicouple for operation between 973 and 300 K. Energy<br>Conversion and Management, 2003, 44, 1069-1088.          | 9.2 | 109       |
| 40 | Efficient segmented thermoelectric unicouples for space power applications. Energy Conversion and Management, 2003, 44, 1755-1772.                         | 9.2 | 109       |