Luisa Gouveia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7274706/publications.pdf

Version: 2024-02-01

57631 60497 7,038 97 44 81 citations h-index g-index papers 99 99 99 6175 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Nannochloropsis oceanica harvested using electrocoagulation with alternative electrodes – An innovative approach on potential biomass applications. Bioresource Technology, 2022, 344, 126222.	4.8	6
2	Primary brewery wastewater as feedstock for the yeast Rhodosporidium toruloides and the microalga Tetradesmus obliquus mixed cultures with lipid production. Process Biochemistry, 2022, 113, 71-86.	1.8	8
3	Rhodosporidium toruloides and Tetradesmus obliquus Populations Dynamics in Symbiotic Cultures, Developed in Brewery Wastewater, for Lipid Production. Current Microbiology, 2022, 79, 40.	1.0	6
4	Nannochloropsis oceanica biomass enriched by electrocoagulation harvesting with promising agricultural applications. Bioresource Technology Reports, 2022, 17, 100979.	1.5	1
5	Exploring Different Pretreatment Methodologies for Allowing Microalgae Growth in Undiluted Piggery Wastewater. Agronomy, 2022, 12, 580.	1.3	6
6	Impact of High-Pressure Homogenization on the Cell Integrity of Tetradesmus obliquus and Seed Germination. Molecules, 2022, 27, 2275.	1.7	9
7	Valorisation of microalga Tetradesmus obliquus grown in brewery wastewater using subcritical water extraction towards zero waste. Chemical Engineering Journal, 2022, 437, 135324.	6.6	7
8	Algae as Food in Europe: An Overview of Species Diversity and Their Application. Foods, 2022, 11, 1871.	1.9	63
9	Supercritical CO2 Extract from Microalga Tetradesmus obliquus: The Effect of High-Pressure Pre-Treatment. Molecules, 2022, 27, 3883.	1.7	2
10	Low Indirect Land Use Change (ILUC) Energy Crops to Bioenergy and Biofuels—A Review. Energies, 2022, 15, 4348.	1.6	14
11	Aquaculture wastewater treatment through microalgal. Biomass potential applications on animal feed, agriculture, and energy. Journal of Environmental Management, 2021, 286, 112187.	3.8	60
12	A circular approach for landfill leachate treatment: Chemical precipitation with biomass ash followed by bioremediation through microalgae. Journal of Environmental Chemical Engineering, 2021, 9, 105187.	3.3	31
13	Bioremediation of cattle manure using microalgae after pre-treatment with biomass ash. Bioresource Technology Reports, 2021, 14, 100681.	1.5	7
14	Biostimulant and biopesticide potential of microalgae growing in piggery wastewater. Environmental Advances, 2021, 4, 100062.	2.2	47
15	Future perspectives of microalgae in the food industry., 2021,, 387-433.		6
16	Evaluation of microalgae as bioremediation agent for poultry effluent and biostimulant for germination. Environmental Technology and Innovation, 2021, 24, 102048.	3.0	13
17	Optimization of Biochar Production by Co-Torrefaction of Microalgae and Lignocellulosic Biomass Using Response Surface Methodology. Energies, 2021, 14, 7330.	1.6	11
18	Green approach for the valorization of microalgae Tetradesmus obliquus. Sustainable Chemistry and Pharmacy, 2021, 24, 100556.	1.6	8

#	Article	IF	CITATIONS
19	Microalgal Systems for Wastewater Treatment: Technological Trends and Challenges towards Waste Recovery. Energies, 2021, 14, 8112.	1.6	21
20	Using flow cytometry to monitor the stress response of yeast and microalgae populations in mixed cultures developed in brewery effluents. Journal of Applied Phycology, 2020, 32, 3687-3701.	1.5	10
21	Microalgae biomass as an additional ingredient of gluten-free bread: Dough rheology, texture quality and nutritional properties. Algal Research, 2020, 50, 101998.	2.4	65
22	Microalgal biorefineries., 2020,, 771-798.		5
23	Incorporation of defatted microalgal biomass (Tetraselmis sp. CTP4) at the expense of soybean meal as a feed ingredient for juvenile gilthead seabream (Sparus aurata). Algal Research, 2020, 47, 101869.	2.4	29
24	Biostimulant Potential of Scenedesmus obliquus Grown in Brewery Wastewater. Molecules, 2020, 25, 664.	1.7	59
25	Pyrolysis of Scenedesmus obliquus Biomass Following the Treatment of Different Wastewaters. Bioenergy Research, 2020, 13, 896-906.	2.2	16
26	Production, Preparation and Characterization of Microalgae-Based Biopolymer as a Potential Bioactive Film. Coatings, 2020, 10, 120.	1.2	43
27	<i>Scenedesmus obliquus</i> in poultry wastewater bioremediation. Environmental Technology (United Kingdom), 2019, 40, 3735-3744.	1.2	24
28	<i>Scenedesmus obliquus</i> microalgaâ€based biorefinery – from brewery effluent to bioactive compounds, biofuels and biofertilizers – aiming at a circular bioeconomy. Biofuels, Bioproducts and Biorefining, 2019, 13, 1169-1186.	1.9	81
29	Life cycle assessment of pilot and real scale photosynthetic biogas upgrading units. Algal Research, 2019, 44, 101668.	2.4	20
30	Nutritional Potential and Toxicological Evaluation of Tetraselmis sp. CTP4 Microalgal Biomass Produced in Industrial Photobioreactors. Molecules, 2019, 24, 3192.	1.7	57
31	Combining Microalgae-Based Wastewater Treatment with Biofuel and Bio-Based Production in the Frame of a Biorefinery. Grand Challenges in Biology and Biotechnology, 2019, , 319-369.	2.4	14
32	Combining biotechnology with circular bioeconomy: From poultry, swine, cattle, brewery, dairy and urban wastewaters to biohydrogen. Environmental Research, 2018, 164, 32-38.	3.7	90
33	Microalgae-mediated brewery wastewater treatment: effect of dilution rate on nutrient removal rates, biomass biochemical composition, and cell physiology. Journal of Applied Phycology, 2018, 30, 1583-1595.	1.5	38
34	Scale-up and large-scale production of Tetraselmis sp. CTP4 (Chlorophyta) for CO2 mitigation: from an agar plate to 100-m3 industrial photobioreactors. Scientific Reports, 2018, 8, 5112.	1.6	57
35	Enhancement of fermentative hydrogen production from Spirogyra sp. by increased carbohydrate accumulation and selection of the biomass pretreatment under a biorefinery model. Journal of Bioscience and Bioengineering, 2018, 126, 226-234.	1.1	22
36	Fermentative hydrogen production from microalgal biomass by a single strain of bacterium Enterobacter aerogenes – Effect of operational conditions and fermentation kinetics. Renewable Energy, 2018, 119, 203-209.	4.3	39

#	Article	IF	CITATIONS
37	Biomass Conversion Technologies: Biological/Biochemical Conversion of Biomass. Lecture Notes in Energy, 2017, , 99-111.	0.2	6
38	Scenedesmus obliquus mediated brewery wastewater remediation and CO 2 biofixation for green energy purposes. Journal of Cleaner Production, 2017, 165, 1316-1327.	4.6	85
39	CO ₂ utilization in the production of biomass and biocompounds by three different microalgae. Engineering in Life Sciences, 2017, 17, 1126-1135.	2.0	19
40	Evaluation of Marine Microalga Diacronema vlkianum Biomass Fatty Acid Assimilation in Wistar Rats. Molecules, 2017, 22, 1097.	1.7	8
41	Isolation of a euryhaline microalgal strain, Tetraselmis sp. CTP4, as a robust feedstock for biodiesel production. Scientific Reports, 2016, 6, 35663.	1.6	44
42	Microalgae biomass production using wastewater: Treatment and costs. Algal Research, 2016, 16, 167-176.	2.4	193
43	From Tiny Microalgae to Huge Biorefineries. , 2015, , 55-76.		2
44	Production and storage of biohydrogen during sequential batch fermentation of Spirogyra hydrolyzate by Clostridium butyricum. Energy, 2015, 88, 528-536.	4.5	34
45	Third generation biohydrogen production by Clostridium butyricum and adapted mixed cultures from Scenedesmus obliquus microalga biomass. Fuel, 2015, 153, 128-134.	3.4	98
46	Combining urban wastewater treatment with biohydrogen production – An integrated microalgae-based approach. Bioresource Technology, 2015, 184, 230-235.	4.8	162
47	Chemical and biological-based isoprene production: Green metrics. Catalysis Today, 2015, 239, 38-43.	2.2	93
48	Scenedesmus obliquus as feedstock for biohydrogen production by Enterobacter aerogenes and Clostridium butyricum. Fuel, 2014, 117, 537-543.	3.4	136
49	New at-line flow cytometric protocols for determining carotenoid content and cell viability during Rhodosporidium toruloides NCYC 921 batch growth. Process Biochemistry, 2014, 49, 554-562.	1.8	33
50	Integrated microbial processes for biofuels and high value-added products: the way to improve the cost effectiveness of biofuel production. Applied Microbiology and Biotechnology, 2014, 98, 1043-1053.	1.7	95
51	Effect of light on the production of bioelectricity and added-value microalgae biomass in a Photosynthetic Alga Microbial Fuel Cell. Bioresource Technology, 2014, 154, 171-177.	4.8	146
52	Evaluation of the simultaneous production of lutein and lipids using a vertical alveolar panel bioreactor for three Chlorella species. Algal Research, 2014, 6, 218-222.	2.4	33
53	Green metrics evaluation of isoprene production by microalgae and bacteria. Green Chemistry, 2013, 15, 2854-2864.	4.6	47
54	Energy requirement and CO2 emissions of bioH2 production from microalgal biomass. Biomass and Bioenergy, 2013, 49, 249-259.	2.9	39

#	Article	IF	Citations
55	Insights on the safety of carotenogenic Chlorella vulgaris in rodents. Algal Research, 2013, 2, 409-415.	2.4	14
56	Carotenoid and lipid production by the autotrophic microalga Chlorella protothecoides under nutritional, salinity, and luminosity stress conditions. Applied Microbiology and Biotechnology, 2013, 97, 1383-1393.	1.7	118
57	Biohydrogen production from microalgal biomass: Energy requirement, CO2 emissions and scale-up scenarios. Bioresource Technology, 2013, 144, 156-164.	4.8	44
58	Comparison of microalgal biomass profiles as novel functional ingredient for food products. Algal Research, 2013, 2, 164-173.	2.4	323
59	A biorefinery from Nannochloropsis sp. microalga – Extraction of oils and pigments. Production of biohydrogen from the leftover biomass. Bioresource Technology, 2013, 135, 128-136.	4.8	267
60	A biorefinery from Nannochloropsis sp. microalga – Energy and CO2 emission and economic analyses. Bioresource Technology, 2013, 138, 235-244.	4.8	68
61	Isochrysis galbana and Diacronema vlkianum biomass incorporation in pasta products as PUFA's source. LWT - Food Science and Technology, 2013, 50, 312-319.	2.5	118
62	Supercritical Extraction of Lycopene from Tomato Industrial Wastes with Ethane. Molecules, 2012, 17, 8397-8407.	1.7	33
63	Bioethanol production from Scenedesmus obliquus sugars: the influence of photobioreactors and culture conditions on biomass production. Applied Microbiology and Biotechnology, 2012, 96, 555-564.	1.7	86
64	Biological hydrogen production by Anabaena sp. – Yield, energy and CO2 analysis including fermentative biomass recovery. International Journal of Hydrogen Energy, 2012, 37, 179-190.	3.8	67
65	Pre-treatment optimization of Scenedesmus obliquus microalga for bioethanol production. Bioresource Technology, 2012, 104, 342-348.	4.8	237
66	Novel foods with microalgal ingredients – Effect of gel setting conditions on the linear viscoelasticity of Spirulina and Haematococcus gels. Journal of Food Engineering, 2012, 110, 182-189.	2.7	54
67	Microalgae as a Feedstock for Biofuels. , 2011, , 1-69.		21
68	Microalgae as a Feedstock for Biofuels. , 2011, , .		72
69	Supercritical carbon dioxide extraction of bioactive compounds from microalgae and volatile oils from aromatic plants. Journal of Supercritical Fluids, 2011, 60, 21-27.	1.6	58
70	Microalgae biomass interaction in biopolymer gelled systems. Food Hydrocolloids, 2011, 25, 817-825.	5.6	37
71	Biohydrogen production by Anabaena sp. PCC 7120 wild-type and mutants under different conditions: Light, nickel, propane, carbon dioxide and nitrogen. Biomass and Bioenergy, 2011, 35, 4426-4434.	2.9	41
72	A symbiotic gas exchange between bioreactors enhances microalgal biomass and lipid productivities: taking advantage of complementary nutritional modes. Journal of Industrial Microbiology and Biotechnology, 2011, 38, 909-917.	1.4	36

#	Article	IF	CITATIONS
73	Microalgae $\hat{a}\in$ " source of natural bioactive molecules as functional ingredients. Food Science and Technology Bulletin, 2010, 7, 21-37.	0.5	50
74	Incorporation of <i>Chlorella vulgaris </i> and <i>Spirulina maxima </i> biomass in pasta products. Part 1: Preparation and evaluation. Journal of the Science of Food and Agriculture, 2010, 90, 1656-1664.	1.7	194
75	Microalgae as a raw material for biofuels production. Journal of Industrial Microbiology and Biotechnology, 2009, 36, 269-274.	1.4	1,008
76	Neochloris oleabundans UTEX #1185: a suitable renewable lipid source for biofuel production. Journal of Industrial Microbiology and Biotechnology, 2009, 36, 821-826.	1.4	202
77	Solar Pond devices: free energy or bioreactors for Artemia biomass production?. Journal of Industrial Microbiology and Biotechnology, 2009, 36, 1035-1045.	1.4	3
78	Effect of temperature on \hat{l}_{\pm} -tocopherol, fatty acid profile, and pigments of Diacronema vlkianum (Haptophyceae). Aquaculture International, 2009, 17, 391-399.	1.1	32
79	Oil Production Towards Biofuel from Autotrophic Microalgae Semicontinuous Cultivations Monitorized by Flow Cytometry. Applied Biochemistry and Biotechnology, 2009, 159, 568-578.	1.4	109
80	Functional biscuits with PUFAâ€i‰3 from <i>Isochrysis galbana</i> Isochrysis galbana from <i>Journal of the Science of Food and Agriculture, 2008, 88, 891-896.</i>	1.7	108
81	<i>Spirulina maxima</i> and <i>Diacronema vlkianum</i> microalgae in vegetable gelled desserts. Nutrition and Food Science, 2008, 38, 492-501.	0.4	41
82	Chlorella vulgaris biomass used as colouring source in traditional butter cookies. Innovative Food Science and Emerging Technologies, 2007, 8, 433-436.	2.7	139
83	Functional food oil coloured by pigments extracted from microalgae with supercritical CO2. Food Chemistry, 2007, 101, 717-723.	4.2	102
84	Chlorella vulgaris and Haematococcus pluvialis biomass as colouring and antioxidant in food emulsions. European Food Research and Technology, 2006, 222, 362-367.	1.6	109
85	Supercritical carbon dioxide extraction of astaxanthin and other carotenoids from the microalga Haematococcus pluvialis. European Food Research and Technology, 2006, 223, 787-790.	1.6	151
86	Effect of microalgal biomass concentration and temperature on ornamental goldfish (Carassius) Tj ETQq0 0 0 rg	BT / Qverlo	ck 10 Tf 50 2
87	Fat mimetic capacity of Chlorella vulgaris biomass in oil-in-water food emulsions stabilized by pea protein. Food Research International, 2005, 38, 961-965.	2.9	67
88	Colouring ornamental fish (Cyprinus carpio and Carassius auratus) with microalgal biomass. Aquaculture Nutrition, 2003, 9, 123-129.	1.1	149
89	Relative stabilities of microalgal carotenoids in microalgal extracts, biomass and fish feed: effect of storage conditions. Innovative Food Science and Emerging Technologies, 2003, 4, 227-233.	2.7	83
90	Utilization of natural and synthetic sources of carotenoids in the skin pigmentation of gilthead seabream (Sparus aurata). European Food Research and Technology, 2002, 214, 287-293.	1.6	77

#	Article	IF	CITATIONS
91	Pigmentation of gilthead seabream, Sparus aurata (L. 1875), using Chlorella vulgaris (Chlorophyta,) Tj ETQq1 1	0.784314	rgBT/Overlo
92	Title is missing!. Aquaculture International, 1998, 6, 269-279.	1.1	41
93	Use ofChlorella vulgarisin Rainbow Trout,Oncorhynchus mykiss, Diets to Enhance Muscle Pigmentation. Journal of Applied Aquaculture, 1997, 7, 61-70.	0.7	33
94	Potential use of a microalga (Chlorella vulgaris) in the pigmentation of rainbow trout (Oncorhynchus mykiss) muscle. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1996, 202, 75-79.	0.7	31
95	Evolution of pigment composition in Chlorella vulgaris. Bioresource Technology, 1996, 57, 157-159.	4.8	92
96	Eicosapentaenoic acid-rich biomass production by the microalga Phaeodactylum tricornutum in a continuous-flow reactor. Bioresource Technology, 1996, 55, 83-88.	4.8	29
97	Lipid production by Phaeodactylum tricornutum. Bioresource Technology, 1991, 38, 115-119.	4.8	44