Ondrej Baszczynski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7274407/publications.pdf

Version: 2024-02-01

759233 713466 34 446 12 21 citations h-index g-index papers 40 40 40 534 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	31P NMR parameters may facilitate the stereochemical analysis of phosphorus-containing compounds. Journal of Magnetic Resonance, 2022, 336, 107149.	2.1	2
2	Phosphate linkers with traceable cyclic intermediates for self-immolation detection and monitoring. Chemical Communications, 2021, 57, 211-214.	4.1	10
3	NMR Structure Elucidation of Naphthoquinones from <i>Quambalaria cyanescens</i> . Journal of Natural Products, 2021, 84, 46-55.	3.0	5
4	<i>Helicobacter pylori</i> Xanthine–Guanine–Hypoxanthine Phosphoribosyltransferase—A Putative Target for Drug Discovery against Gastrointestinal Tract Infections. Journal of Medicinal Chemistry, 2021, 64, 5710-5729.	6.4	4
5	Phosphateâ€Based Selfâ€Immolative Linkers for Tuneable Double Cargo Release. Chemistry - A European Journal, 2021, 27, 12763-12775.	3.3	5
6	Phosphateâ€Based Selfâ€Immolative Linkers for Tuneable Double Cargo Release. Chemistry - A European Journal, 2021, 27, 12713-12713.	3.3	0
7	Discovery of Modified Amidate (ProTide) Prodrugs of Tenofovir with Enhanced Antiviral Properties. Journal of Medicinal Chemistry, 2021, 64, 16425-16449.	6.4	13
8	Variability in the response of HBV D-subgenotypes to antiviral therapy: designing pan D-subgenotypic reverse transcriptase inhibitors. Journal of Virology, 2021, , JVI0180021.	3.4	1
9	Phosphate-Based Self-Immolative Linkers for the Delivery of Amine-Containing Drugs. Molecules, 2021, 26, .	3.8	O
10	Phosphate-Based Self-Immolative Linkers for the Delivery of Amine-Containing Drugs. Molecules, 2021, 26, 5160.	3.8	2
11	Synthesis of phosphonoacetate analogues of the second messenger adenosine 5′-diphosphate ribose (ADPR). RSC Advances, 2020, 10, 1776-1785.	3.6	6
12	Stericallyâ€Controlled Selfâ€Immolation in Phosphoramidate Linkers Triggered by Light. European Journal of Organic Chemistry, 2020, 2020, 897-906.	2.4	6
13	Mechanisms of Inhibitory Effects of Polysubstituted Pyrimidines on Prostaglandin E2 Production. Proceedings (mdpi), 2019, 22, 24.	0.2	O
14	Reactive cyclic intermediates in the ProTide prodrugs activation: trapping the elusive pentavalent phosphorane. Organic and Biomolecular Chemistry, 2019, 17, 315-320.	2.8	21
15	Synthesis and anti-human immunodeficiency virus activity of substituted (⟨i⟩o,o⟨ i⟩-difluorophenyl)-linked-pyrimidines as potent nonâ€nucleoside reverse transcriptase inhibitors. Antiviral Chemistry and Chemotherapy, 2019, 27, 204020661982626.	0.6	4
16	Synthesis of Terminal Ribose Analogues of Adenosine 5′-Diphosphate Ribose as Probes for the Transient Receptor Potential Cation Channel TRPM2. Journal of Organic Chemistry, 2019, 84, 6143-6157.	3.2	14
17	Xanthine-based acyclic nucleoside phosphonates with potent antiviral activity against varicella-zoster virus and human cytomegalovirus. Antiviral Chemistry and Chemotherapy, 2018, 26, 204020661881305.	0.6	4
18	Acyclic Nucleoside Phosphonates Containing 9â€Deazahypoxanthine and a Fiveâ€Membered Heterocycle as Selective Inhibitors of Plasmodial 6â€Oxopurine Phosphoribosyltransferases. ChemMedChem, 2017, 12, 1133-1141.	3.2	18

#	Article	IF	CITATIONS
19	Novel (2,6-difluorophenyl)(2-(phenylamino)pyrimidin-4-yl)methanones with restricted conformation as potent non-nucleoside reverse transcriptase inhibitors against HIV-1. European Journal of Medicinal Chemistry, 2016, 122, 185-195.	5.5	11
20	Crystal Structures of Acyclic Nucleoside Phosphonates in Complex with Escherichia coli Hypoxanthine Phosphoribosyltransferase. Chemistry Select, 2016, 1, 6267-6276.	1.5	8
21	Phytotoxicity of acyclic nucleoside phosphonates in Brassica pekinensis and Solanum lycopersicum. Plant Cell, Tissue and Organ Culture, 2016, 125, 375-379.	2.3	1
22	The effect of novel [3-fluoro-(2-phosphonoethoxy)propyl]purines on the inhibition of Plasmodium falciparum, Plasmodium vivax and human hypoxanthine–guanine–(xanthine) phosphoribosyltransferases. European Journal of Medicinal Chemistry, 2013, 67, 81-89.	5.5	19
23	Medicinal Chemistry of Fluorinated Cyclic and Acyclic Nucleoside Phosphonates. Medicinal Research Reviews, 2013, 33, 1304-1344.	10.5	47
24	An efficient oxa-Michael addition to diethyl vinylphosphonate under mild reaction conditions. RSC Advances, 2012, 2, 1282-1284.	3.6	13
25	Microwave-assisted hydrolysis of phosphonate diesters: an efficient protocol for the preparation of phosphonic acids. Green Chemistry, 2012, 14, 2282.	9.0	35
26	Synthesis of 9-phosphonoalkyl and 9-phosphonoalkoxyalkyl purines: Evaluation of their ability to act as inhibitors of Plasmodium falciparum, Plasmodium vivax and human hypoxanthine–guanine–(xanthine) phosphoribosyltransferases. Bioorganic and Medicinal Chemistry, 2012, 20, 1076-1089.	3.0	36
27	An enzymatic glycosylation of nucleoside analogues using \hat{l}^2 -galactosidase from Escherichia coli. Bioorganic and Medicinal Chemistry, 2012, 20, 3111-3118.	3.0	8
28	An efficient microwave-assisted synthesis and biological properties of polysubstituted pyrimidinyland 1,3,5-triazinylphosphonic acids. Tetrahedron, 2012, 68, 865-871.	1.9	23
29	Efficient and â€~green' microwave-assisted synthesis of haloalkylphosphonates via the Michaelis–Arbuzov reaction. Green Chemistry, 2011, 13, 882.	9.0	40
30	A novel and efficient one-pot synthesis of symmetrical diamide (bis-amidate) prodrugs of acyclic nucleoside phosphonates and evaluation of their biological activities. European Journal of Medicinal Chemistry, 2011, 46, 3748-3754.	5.5	58
31	Synthesis and antiviral activity of N9-[3-fluoro-2-(phosphonomethoxy)propyl] analogues derived from N6-substituted adenines and 2,6-diaminopurines. Bioorganic and Medicinal Chemistry, 2011, 19, 2114-2124.	3.0	27
32	3-Fluoro-2-(phosphonomethoxy) propyl hypoxanthine and guanine derivatives as inhibitors of plasmodial hypoxanthine-guanine-xanthine phosphoribosyl transferases. , 2011, , .		1
33	The unique impact of microwave irradiaton on the chemistry of acyclic nucleoside phosphonates. , $2011, , .$		2
34	Hydroboration of 1,1'-Bi(cyclopent-1-ene) and 3,3'-Biindene: Experimental and Theoretical Study. Collection of Czechoslovak Chemical Communications, 2006, 71, 1611-1626.	1.0	2