Sebastian M Shimeld

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7274294/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genesis and Expansion of Metazoan Transcription Factor Gene Classes. Molecular Biology and Evolution, 2008, 25, 980-996.	8.9	262
2	Molecular evidence from Ciona intestinalis for the evolutionary origin of vertebrate sensory placodes. Developmental Biology, 2005, 282, 494-508.	2.0	158
3	The evolution of the hedgehog gene family in chordates: insights from amphioxus hedgehog. Development Genes and Evolution, 1999, 209, 40-47.	0.9	157
4	Urochordate βγ-Crystallin and the Evolutionary Origin of the Vertebrate Eye Lens. Current Biology, 2005, 15, 1684-1689.	3.9	152
5	Evolutionary crossroads in developmental biology: cyclostomes (lamprey and hagfish). Development (Cambridge), 2012, 139, 2091-2099.	2.5	142
6	Evolution of bilaterian central nervous systems: a single origin?. EvoDevo, 2013, 4, 27.	3.2	139
7	A genomewide survey of developmentally relevant genes in Ciona intestinalis. Development Genes and Evolution, 2003, 213, 235-244.	0.9	138
8	Pitx homeobox genes in Ciona and amphioxus show left-right asymmetry is a conserved chordate character and define the ascidian adenohypophysis. Evolution & Development, 2002, 4, 354-365.	2.0	136
9	The evolution of left–right asymmetry in chordates. BioEssays, 2002, 24, 1004-1011.	2.5	119
10	The murine homeobox gene Msx-3 shows highly restricted expression in the developing neural tube. Mechanisms of Development, 1996, 55, 201-210.	1.7	115
11	Phylogenetic relationships of the Fox (Forkhead) gene family in the Bilateria. Gene, 2003, 316, 79-89.	2.2	104
12	Characterisation of Amphioxus HNF-3 Genes: Conserved Expression in the Notochord and Floor Plate. Developmental Biology, 1997, 183, 74-85.	2.0	94
13	An amphioxus Msx gene expressed predominantly in the dorsal neural tube. Development Genes and Evolution, 1999, 209, 260-263.	0.9	93
14	The development of the larval nervous system, musculature and ciliary bands of Pomatoceros lamarckii (Annelida): heterochrony in polychaetes. Frontiers in Zoology, 2006, 3, 16.	2.0	81
15	The evolutionary history of vertebrate cranial placodes – I: Cell type evolution. Developmental Biology, 2014, 389, 82-97.	2.0	79
16	Genomic Sequence and Experimental Tractability of a New Decapod Shrimp Model, Neocaridina denticulata. Marine Drugs, 2014, 12, 1419-1437.	4.6	77
17	Evidence for the regulation of left-right asymmetry inCiona intestinalis by ion flux. Developmental Dynamics, 2006, 235, 1543-1553.	1.8	71
18	Evolutionary genomics of the Fox genes: Origin of gene families and the ancestry of gene clusters. Genomics, 2010, 95, 256-260.	2.9	68

#	Article	IF	CITATIONS
19	Amphioxus molecular biology: insights into vertebrate evolution and developmental mechanisms. Canadian Journal of Zoology, 2005, 83, 90-100.	1.0	67
20	The Evolution of Chordate Neural Segmentation. Developmental Biology, 2002, 251, 258-270.	2.0	65
21	The evolutionary history of vertebrate cranial placodes II. Evolution of ectodermal patterning. Developmental Biology, 2014, 389, 98-119.	2.0	58
22	Expression ofAmphiCoe, an amphioxus COE/EBF gene, in the developing central nervous system and epidermal sensory neurons. Genesis, 2004, 38, 58-65.	1.6	57
23	Protochordate Zic genes define primitive somite compartments and highlight molecular changes underlying neural crest evolution. Evolution & Development, 2003, 5, 136-144.	2.0	55
24	The origin and evolution of the ectodermal placodes. Journal of Anatomy, 2013, 222, 32-40.	1.5	54
25	Analysis of a deep transcriptome from the mantle tissue of Patella vulgata Linnaeus (Mollusca:) Tj ETQq1 1 0.784 230-243.	1314 rgBT 2.4	/Overlock 10 53
26	Right across the tree of life: The evolution of left–right asymmetry in the Bilateria. Genesis, 2014, 52, 458-470.	1.6	51
27	Cerberus–Nodal–Lefty–Pitx signaling cascade controls left <i>–</i> right asymmetry in amphioxus. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3684-3689.	7.1	51
28	The Fox genes of Branchiostoma floridae. Development Genes and Evolution, 2008, 218, 629-638.	0.9	49
29	Pax gene expression in the developing central nervous system of Ciona intestinalis. Gene Expression Patterns, 2003, 3, 743-745.	0.8	46
30	Gene duplication and divergence in the early evolution of vertebrates. Current Opinion in Genetics and Development, 2002, 12, 393-396.	3.3	45
31	Molecular evidence from ascidians for the evolutionary origin of vertebrate cranial sensory placodes. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2005, 304B, 340-346.	1.3	44
32	Clustered Fox genes in lophotrochozoans and the evolution of the bilaterian Fox gene cluster. Developmental Biology, 2010, 340, 234-248.	2.0	44
33	Cloning and expression of a Pitx homeobox gene from the lamprey, a jawless vertebrate. Development Genes and Evolution, 2002, 212, 349-353.	0.9	41
34	Comparative genomics of vertebrate Fox cluster loci. BMC Genomics, 2006, 7, 271.	2.8	41
35	An EST screen from the annelid Pomatoceros lamarckii reveals patterns of gene loss and gain in animals. BMC Evolutionary Biology, 2009, 9, 240.	3.2	40
36	An ancient Fox gene cluster in bilaterian animals. Current Biology, 2006, 16, R314-R316.	3.9	38

#	Article	IF	CITATIONS
37	Retinoic acid, HOX genes and the anterior-posterior axis in chordates. BioEssays, 1996, 18, 613-616.	2.5	37
38	A genome-wide view of transcription factor gene diversity in chordate evolution: less gene loss in amphioxus?. Briefings in Functional Genomics, 2012, 11, 177-186.	2.7	36
39	Gene function, gene networks and the fate of duplicated genes. Seminars in Cell and Developmental Biology, 1999, 10, 549-553.	5.0	35
40	Symmetrical Reproductive Compatibility of Two Species in the Ciona intestinalis (Ascidiacea) Species Complex, a Model for Marine Genomics and Developmental Biology. Zoological Science, 2014, 31, 369.	0.7	35
41	The evolutionary origins of the vertebrate olfactory system. Open Biology, 2020, 10, 200330.	3.6	34
42	An Amphioxus Gli Gene Reveals Conservation of Midline Patterning and the Evolution of Hedgehog Signalling Diversity in Chordates. PLoS ONE, 2007, 2, e864.	2.5	34
43	Identification of conserved C2H2 zinc-finger gene families in the Bilateria. Genome Biology, 2001, 2, research0016.1.	9.6	33
44	Expression of FoxC, FoxF, FoxL1, and FoxQ1 genes in the dogfish <i>Scyliorhinus canicula</i> defines ancient and derived roles for fox genes in vertebrate development. Developmental Dynamics, 2008, 237, 1590-1603.	1.8	32
45	The Lophotrochozoan TGF-β signalling cassette - diversification and conservation in a key signalling pathway. International Journal of Developmental Biology, 2014, 58, 533-549.	0.6	32
46	C2H2 zinc finger genes of the Gli, Zic, KLF, SP, Wilms' tumour, Huckebein, Snail, Ovo, Spalt, Odd, Blimp-1, Fez and related gene families from Branchiostoma floridae. Development Genes and Evolution, 2008, 218, 639-649.	0.9	30
47	An amphioxus netrin gene is expressed in midline structures during embryonic and larval development. Development Genes and Evolution, 2000, 210, 337-344.	0.9	28
48	Draft genome assemblies and predicted microRNA complements of the intertidal lophotrochozoans Patella vulgata (Mollusca, Patellogastropoda) and Spirobranchus (Pomatoceros) lamarcki (Annelida,) Tj ETQqO () OirgBT /(Ov ert ock 10 T [.]
49	Phylogenetics of Lophotrochozoan bHLH Genes and the Evolution of Lineage-Specific Gene Duplicates. Genome Biology and Evolution, 2017, 9, 869-886.	2.5	26
50	Characterisation of the murine Hox-3.3 gene and its promoter. Mechanisms of Development, 1991, 35, 129-142.	1.7	24
51	The developmental expression of foxl2 in the dogfish Scyliorhinus canicula. Gene Expression Patterns, 2007, 7, 793-797.	0.8	23
52	Evolutionary conservation of the placodal transcriptional network during sexual and asexual development in chordates. Developmental Dynamics, 2013, 242, 752-766.	1.8	22
53	Evolution of vertebrate spinal cord patterning. Developmental Dynamics, 2019, 248, 1028-1043.	1.8	20
54	Analysis of lamprey clustered Fox genes: Insight into Fox gene evolution and expression in vertebrates. Gene, 2011, 489, 30-40.	2.2	18

#	Article	IF	CITATIONS
55	Identification of molecular signatures specific for distinct cranial sensory ganglia in the developing chick. Neural Development, 2016, 11, 3.	2.4	18
56	Step-wise evolution of neural patterning by Hedgehog signalling in chordates. Nature Ecology and Evolution, 2020, 4, 1247-1255.	7.8	18
57	The amphioxus FoxQ1 gene is expressed in the developing endostyle. Gene Expression Patterns, 2005, 5, 313-315.	0.8	17
58	Muscle differentiation in a colonial ascidian: organisation, gene expression and evolutionary considerations. BMC Developmental Biology, 2009, 9, 48.	2.1	17
59	Developmental signature, synaptic connectivity and neurotransmission are conserved between vertebrate hair cells and tunicate coronal cells. Journal of Comparative Neurology, 2018, 526, 957-971.	1.6	17
60	Parallel Evolution of Chordate Cis-Regulatory Code for Development. PLoS Genetics, 2013, 9, e1003904.	3.5	16
61	Molecular basis of canalization in an ascidian species complex adapted to different thermal conditions. Scientific Reports, 2015, 5, 16717.	3.3	16
62	Characterisation of an amphioxus Fringe gene and the evolution of the vertebrate segmentation clock. Development Genes and Evolution, 2003, 213, 505-509.	0.9	15
63	The formation and positioning of cilia in Ciona intestinalis embryos in relation to the generation and evolution of chordate left–right asymmetry. Developmental Biology, 2012, 364, 214-223.	2.0	15
64	Hmx gene conservation identifies the origin of vertebrate cranial ganglia. Nature, 2022, 605, 701-705.	27.8	15
65	A transcriptional modification motif encoded by homeobox and fork head genes. FEBS Letters, 1997, 410, 124-125.	2.8	12
66	Chordate Î ² Î ³ -crystallins and the evolutionary developmental biology of the vertebrate lens. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2007, 147, 347-357.	1.6	12
67	A Notch-regulated proliferative stem cell zone in the developing spinal cord is an ancestral vertebrate trait. Development (Cambridge), 2019, 146, .	2.5	12
68	Additive multiple k-mer transcriptome of the keelworm Pomatoceros lamarckii (Annelida; Serpulidae) reveals annelid trochophore transcription factor cassette. Development Genes and Evolution, 2012, 222, 325-339.	0.9	11
69	Expression of a <i>Musashi</i> â€like gene in sexual and asexual development of the colonial chordate <i>Botryllus schlosseri</i> and phylogenetic analysis of the protein group. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2011, 316B, 562-573.	1.3	10
70	Analysis of a botryllid enriched-full-length cDNA library: insight into the evolution of spliced leader trans-splicing in tunicates. Development Genes and Evolution, 2011, 220, 329-336.	0.9	9
71	Characterization of two <i>neurogenin</i> genes from the brook lamprey <i>lampetra planeri</i> and their expression in the lamprey nervous system. Developmental Dynamics, 2015, 244, 1096-1108.	1.8	9
72	The structure, splicing, synteny and expression of lamprey COE genes and the evolution of the COE gene family in chordates. Development Genes and Evolution, 2017, 227, 319-338.	0.9	9

#	Article	IF	CITATIONS
73	Calcium turns sinister in left–right asymmetry. Trends in Genetics, 2004, 20, 277-280.	6.7	8
74	Dissection of a Ciona regulatory element reveals complexity of cross-species enhancer activity. Developmental Biology, 2014, 390, 261-272.	2.0	8
75	Transmission and Scanning Electron Microscopy of the Accessory Cells and Chorion During Development of <i>Ciona intestinalis</i> Type B Embryos and the Impact of Their Removal on Cell Morphology. Zoological Science, 2015, 32, 217-222.	0.7	7
76	Identification of genes for engineering the male germline of Aedes aegypti and Ceratitis capitata. BMC Genomics, 2016, 17, 948.	2.8	6
77	DnaJ chaperones contribute to canalization. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 2019, 331, 201-212.	1.9	6
78	Cell-surface changes induced by ectopic expression of the murine homeoâ~•gene Hox-3.3. Biochimica Et Biophysica Acta - Molecular Cell Research, 1992, 1136, 253-258.	4.1	4
79	Models for the future. Development (Cambridge), 2009, 136, 4068-4069.	2.5	2
80	Live Imaging of Cleavage Variability and Vesicle Flow Dynamics in Dextral and Sinistral Spiralian Embryos. Zoological Science, 2019, 36, 5.	0.7	1
81	Peter Holland, homeobox genes, and the developmental basis of animal diversity. Russian Journal of Developmental Biology, 2008, 39, 188-193.	0.5	0
82	Peter Holland, homeobox genes and the developmental basis of animal diversity. International Journal of Developmental Biology, 2008, 52, 3-7.	0.6	0
83	Gene Duplications. , 2005, , 655-657.		Ο