
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7274290/publications.pdf Version: 2024-02-01

Υμλητίο

#	Article	IF	CITATIONS
1	Evaluating the state of the art in missing data imputation for clinical data. Briefings in Bioinformatics, 2022, 23, .	3.2	42
2	Circulating ACE2-expressing extracellular vesicles block broad strains of SARS-CoV-2. Nature Communications, 2022, 13, 405.	5.8	92
3	Proactive vs Reactive Machine Learning in Health Care. JAMA - Journal of the American Medical Association, 2022, 327, 623.	3.8	16
4	MedGCN: Medication recommendation and lab test imputation via graph convolutional networks. Journal of Biomedical Informatics, 2022, 127, 104000.	2.5	23
5	Statistical and machine learning methods for spatially resolved transcriptomics data analysis. Genome Biology, 2022, 23, 83.	3.8	66
6	Ductal Carcinoma In Situ of Breast: From Molecular Etiology to Therapeutic Management. Endocrinology, 2022, 163, .	1.4	5
7	Using an Unsupervised Clustering Model to Detect the Early Spread of SARS-CoV-2 Worldwide. Genes, 2022, 13, 648.	1.0	1
8	Advances in Machine Learning Approaches to Heart Failure with Preserved Ejection Fraction. Heart Failure Clinics, 2022, 18, 287-300.	1.0	9
9	Distinguishing Admissions Specifically for COVID-19 From Incidental SARS-CoV-2 Admissions: National Retrospective Electronic Health Record Study. Journal of Medical Internet Research, 2022, 24, e37931.	2.1	33
10	Development and validation of <i>MicrobEx</i> : an open-source package for microbiology culture concept extraction. JAMIA Open, 2022, 5, .	1.0	1
11	Artificial Intelligence and Machine Learning for Safe Medicines. Drug Safety, 2022, 45, 403-405.	1.4	7
12	Machine Learning in Causal Inference: Application in Pharmacovigilance. Drug Safety, 2022, 45, 459-476.	1.4	7
13	Comparison between machine learning methods for mortality prediction for sepsis patients with different social determinants. BMC Medical Informatics and Decision Making, 2022, 22, .	1.5	6
14	International comparisons of laboratory values from the 4CE collaborative to predict COVID-19 mortality. Npj Digital Medicine, 2022, 5, .	5.7	7
15	Changes in laboratory value improvement and mortality rates over the course of the pandemic: an international retrospective cohort study of hospitalised patients infected with SARS-CoV-2. BMJ Open, 2022, 12, e057725.	0.8	4
16	International electronic health record-derived post-acute sequelae profiles of COVID-19 patients. Npj Digital Medicine, 2022, 5, .	5.7	17
17	Sepsis subphenotyping based on organ dysfunction trajectory. Critical Care, 2022, 26, .	2.5	24
18	A deep-learning-based unsupervised model on esophageal manometry using variational autoencoder. Artificial Intelligence in Medicine, 2021, 112, 102006.	3.8	19

#	Article	IF	CITATIONS
19	Using Tweets to Understand How COVID-19–Related Health Beliefs Are Affected in the Age of Social Media: Twitter Data Analysis Study. Journal of Medical Internet Research, 2021, 23, e26302.	2.1	37
20	What Every Reader Should Know About Studies Using Electronic Health Record Data but May Be Afraid to Ask. Journal of Medical Internet Research, 2021, 23, e22219.	2.1	61
21	Evaluation of structured data from electronic health records to identify clinical classification criteria attributes for systemic lupus erythematosus. Lupus Science and Medicine, 2021, 8, e000488.	1.1	6
22	Unsupervised phenotyping of sepsis using nonnegative matrix factorization of temporal trends from a multivariate panel of physiological measurements. BMC Medical Informatics and Decision Making, 2021, 21, 95.	1.5	8
23	Validation of an internationally derived patient severity phenotype to support COVID-19 analytics from electronic health record data. Journal of the American Medical Informatics Association: JAMIA, 2021, 28, 1411-1420.	2.2	37
24	International Changes in COVID-19 Clinical Trajectories Across 315 Hospitals and 6 Countries: Retrospective Cohort Study. Journal of Medical Internet Research, 2021, 23, e31400.	2.1	19
25	International Analysis of Electronic Health Records of Children and Youth Hospitalized With COVID-19 Infection in 6 Countries. JAMA Network Open, 2021, 4, e2112596.	2.8	33
26	A Mendelian Randomization Approach Using 3-HMG-Coenzyme-A Reductase Gene Variation to Evaluate the Association of Statin-Induced Low-Density Lipoprotein Cholesterol Lowering With Noncardiovascular Disease Phenotypes. JAMA Network Open, 2021, 4, e2112820.	2.8	16
27	National Trends in Disease Activity for COVID-19 Among Children in the US. Frontiers in Pediatrics, 2021, 9, 700656.	0.9	3
28	The role of machine learning in clinical research: transforming the future of evidence generation. Trials, 2021, 22, 537.	0.7	82
29	Evolving phenotypes of non-hospitalized patients that indicate long COVID. BMC Medicine, 2021, 19, 249.	2.3	87
30	Simulation of Ventilator Allocation in Critically III Patients with COVID-19. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 1224-1227.	2.5	14
31	Deep learning for cancer type classification and driver gene identification. BMC Bioinformatics, 2021, 22, 491.	1.2	14
32	Multinational characterization of neurological phenotypes in patients hospitalized with COVID-19. Scientific Reports, 2021, 11, 20238.	1.6	10
33	Optimizing the evaluation of gene-targeted panels for tumor mutational burden estimation. Scientific Reports, 2021, 11, 21072.	1.6	9
34	Integration of NLP2FHIR Representation with Deep Learning Models for EHR Phenotyping: A Pilot Study on Obesity Datasets. AMIA Summits on Translational Science Proceedings, 2021, 2021, 410-419.	0.4	0
35	CQL4NLP: Development and Integration of FHIR NLP Extensions in Clinical Quality Language for EHR-driven Phenotyping. AMIA Summits on Translational Science Proceedings, 2021, 2021, 624-633.	0.4	1
36	The power of genetic diversity in genome-wide association studies of lipids. Nature, 2021, 600, 675-679.	13.7	353

#	Article	IF	CITATIONS
37	Unsupervised Learning to Subphenotype Delirium Patients from Electronic Health Records. , 2021, , .		1
38	Early Prediction of Mortality in Critical Care Setting in Sepsis Patients Using Structured Features and Unstructured Clinical Notes. , 2021, , .		3
39	SNPs Filtered by Allele Frequency Improve the Prediction of Hypertension Subtypes. , 2021, , .		0
40	Unsupervised clustering analysis of SARS-Cov-2 population structure reveals six major subtypes at early stage across the world. , 2021, , .		0
41	COVID Vaccine and Cardiovascular Risks: A Natural Language Analysis of Vaccine Adverse Event Reports. , 2021, , .		0
42	Supervised subgraph augmented non-negative matrix factorization for interpretable manufacturing time series data analytics. IISE Transactions, 2020, 52, 120-131.	1.6	3
43	Identifying sub-phenotypes of acute kidney injury using structured and unstructured electronic health record data with memory networks. Journal of Biomedical Informatics, 2020, 102, 103361.	2.5	49
44	Predictive modeling of bacterial infections and antibiotic therapy needs in critically ill adults. Journal of Biomedical Informatics, 2020, 109, 103540.	2.5	12
45	<scp>Dataâ€driven</scp> discovery of probable Alzheimer's disease and related dementia subphenotypes using electronic health records. Learning Health Systems, 2020, 4, e10246.	1.1	12
46	A multidimensional precision medicine approach identifies an autism subtype characterized by dyslipidemia. Nature Medicine, 2020, 26, 1375-1379.	15.2	49
47	Subphenotyping depression using machine learning and electronic health records. Learning Health Systems, 2020, 4, e10241.	1.1	12
48	Preoperative magnetic resonance imaging use and oncologic outcomes in premenopausal breast cancer patients. Npj Breast Cancer, 2020, 6, 49.	2.3	10
49	Toward <scp>crossâ€platform</scp> electronic health record <scp>â€driven</scp> phenotyping using Clinical Quality Language. Learning Health Systems, 2020, 4, e10233.	1.1	17
50	Derivation and Validation of Novel Phenotypes of Multiple Organ Dysfunction Syndrome in Critically Ill Children. JAMA Network Open, 2020, 3, e209271.	2.8	45
51	Hyperchloremia in critically ill patients: association with outcomes and prediction using electronic health record data. BMC Medical Informatics and Decision Making, 2020, 20, 302.	1.5	8
52	Performanceâ€weightedâ€voting model: An ensemble machine learning method for cancer type classification using wholeâ€exome sequencing mutation. Quantitative Biology, 2020, 8, 347-358.	0.3	14
53	Genetic-Based Hypertension Subtype Identification Using Informative SNPs. Genes, 2020, 11, 1265.	1.0	5
54	Prediction of breast cancer distant recurrence using natural language processing and knowledge-guided convolutional neural network. Artificial Intelligence in Medicine, 2020, 110, 101977.	3.8	50

#	Article	IF	CITATIONS
55	Somatic genetic aberrations in benign breast disease and the risk of subsequent breast cancer. Npj Breast Cancer, 2020, 6, 24.	2.3	10
56	A novel normalization and differential abundance test framework for microbiome data. Bioinformatics, 2020, 36, 3959-3965.	1.8	12
57	A Comparison of Pre-trained Vision-and-Language Models for Multimodal Representation Learning across Medical Images and Reports. , 2020, , .		35
58	Predicting mortality in critically ill patients with diabetes using machine learning and clinical notes. BMC Medical Informatics and Decision Making, 2020, 20, 295.	1.5	51
59	Integrating and Evaluating the Data Quality and Utility of Smart Pump Information in Detecting Medication Administration Errors: Evaluation Study. JMIR Medical Informatics, 2020, 8, e19774.	1.3	6
60	A Predictive Model for Parkinson's Disease Reveals Candidate Gene Sets for Progression Subtype. , 2020, , .		1
61	A Pre-trained Clinical Language Model for Acute Kidney Injury. , 2020, , .		2
62	Natural Language Processing for EHR-Based Computational Phenotyping. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16, 139-153.	1.9	123
63	Are My EHRs Private Enough? Event-Level Privacy Protection. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16, 103-112.	1.9	2
64	Facilitating phenotype transfer using a common data model. Journal of Biomedical Informatics, 2019, 96, 103253.	2.5	49
65	Cancer classification and pathway discovery using non-negative matrix factorization. Journal of Biomedical Informatics, 2019, 96, 103247.	2.5	24
66	Developing a FHIR-based EHR phenotyping framework: A case study for identification of patients with obesity and multiple comorbidities from discharge summaries. Journal of Biomedical Informatics, 2019, 99, 103310.	2.5	48
67	Making work visible for electronic phenotype implementation: Lessons learned from the eMERGE network. Journal of Biomedical Informatics, 2019, 99, 103293.	2.5	27
68	Harmonizing Clinical Sequencing and Interpretation for the eMERGE III Network. American Journal of Human Genetics, 2019, 105, 588-605.	2.6	99
69	Graph Convolutional Networks for Text Classification. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33, 7370-7377.	3.6	1,007
70	Traditional Chinese medicine clinical records classification with BERT and domain specific corpora. Journal of the American Medical Informatics Association: JAMIA, 2019, 26, 1632-1636.	2.2	46
71	Identifying Breast Cancer Distant Recurrences from Electronic Health Records Using Machine Learning. Journal of Healthcare Informatics Research, 2019, 3, 283-299.	5.3	15
72	Clinical text classification with rule-based features and knowledge-guided convolutional neural networks. BMC Medical Informatics and Decision Making, 2019, 19, 71.	1.5	76

#	Article	IF	CITATIONS
73	Developing a portable natural language processing based phenotyping system. BMC Medical Informatics and Decision Making, 2019, 19, 78.	1.5	32
74	Efficient Genomic Interval Queries Using Augmented Range Trees. Scientific Reports, 2019, 9, 5059.	1.6	4
75	Classifying relations in clinical narratives using segment graph convolutional and recurrent neural networks (Seg-GCRNs). Journal of the American Medical Informatics Association: JAMIA, 2019, 26, 262-268.	2.2	38
76	Early prediction of acute kidney injury following ICU admission using a multivariate panel of physiological measurements. BMC Medical Informatics and Decision Making, 2019, 19, 16.	1.5	64
77	Phenotyping Multiple Organ Dysfunction Syndrome Using Temporal Trends in Critically Ill Children. , 2019, 2019, 968-972.		4
78	Mixture-based Multiple Imputation Model for Clinical Data with a Temporal Dimension. , 2019, , .		4
79	Using Machine Learning to Predict Hyperchloremia in Critically Ill Patients. , 2019, 2019, 1703-1707.		2
80	Integrating hypertension phenotype and genotype with hybrid non-negative matrix factorization. Bioinformatics, 2019, 35, 1395-1403.	1.8	12
81	Predicting ICU readmission using grouped physiological and medication trends. Artificial Intelligence in Medicine, 2019, 95, 27-37.	3.8	47
82	Recent Advances in Supervised Dimension Reduction: A Survey. Machine Learning and Knowledge Extraction, 2019, 1, 341-358.	3.2	72
83	Data Challenges With Real-Time Safety Event Detection And Clinical Decision Support. Journal of Medical Internet Research, 2019, 21, e13047.	2.1	12
84	Early Prediction of Acute Kidney Injury in Critical Care Setting Using Clinical Notes and Structured Multivariate Physiological Measurements. Studies in Health Technology and Informatics, 2019, 264, 368-372.	0.2	25
85	Stratified Mortality Prediction of Patients with Acute Kidney Injury in Critical Care. Studies in Health Technology and Informatics, 2019, 264, 462-466.	0.2	12
86	Predictive Modeling of the Risk of Acute Kidney Injury in Critical Care: A Systematic Investigation of The Class Imbalance Problem. AMIA Summits on Translational Science Proceedings, 2019, 2019, 809-818.	0.4	2
87	Considerations for Improving the Portability of Electronic Health Record-Based Phenotype Algorithms. AMIA Annual Symposium proceedings, 2019, 2019, 755-764.	0.2	9
88	Evaluating the Portability of an NLP System for Processing Echocardiograms: A Retrospective, Multi-site Observational Study. AMIA Annual Symposium proceedings, 2019, 2019, 190-199.	0.2	4
89	Rich Text Formatted EHR Narratives: A Hidden and Ignored Trove. Studies in Health Technology and Informatics, 2019, 264, 472-476.	0.2	1
90	Using Machine Learning to Integrate Socio-Behavioral Factors in Predicting Cardiovascular-Related Mortality Risk. Studies in Health Technology and Informatics, 2019, 264, 433-437.	0.2	3

#	Article	IF	CITATIONS
91	Decentralized and reproducible geocoding and characterization of community and environmental exposures for multisite studies. Journal of the American Medical Informatics Association: JAMIA, 2018, 25, 309-314.	2.2	67
92	3D-MICE: integration of cross-sectional and longitudinal imputation for multi-analyte longitudinal clinical data. Journal of the American Medical Informatics Association: JAMIA, 2018, 25, 645-653.	2.2	73
93	Electronic medical records as a replacement for prospective research data collection in postoperative pain and opioid response studies. International Journal of Medical Informatics, 2018, 111, 45-50.	1.6	15
94	Segment convolutional neural networks (Seg-CNNs) for classifying relations in clinical notes. Journal of the American Medical Informatics Association: JAMIA, 2018, 25, 93-98.	2.2	62
95	Deep Generative Classifiers for Thoracic Disease Diagnosis with Chest X-ray Images. , 2018, 2018, 1209-1214.		12
96	Supervised Nonnegative Matrix Factorization to Predict ICU Mortality Risk. , 2018, 2018, 1189-1194.		13
97	Using natural language processing and machine learning to identify breast cancer local recurrence. BMC Bioinformatics, 2018, 19, 498.	1.2	60
98	Characterizing Design Patterns of EHR-Driven Phenotype Extraction Algorithms. , 2018, , .		2
99	Implementing a Portable Clinical NLP System with a Common Data Model a Lisp Perspective. , 2018, 2018, 461-466.		2
100	Early Prediction of Acute Kidney Injury in Critical Care Setting Using Clinical Notes. , 2018, 2018, 683-686.		34
101	Improving the Accuracy of Scores to Predict Gastrostomy after Intracerebral Hemorrhage with Machine Learning. Journal of Stroke and Cerebrovascular Diseases, 2018, 27, 3570-3574.	0.7	7
102	Designing and evaluating an automated system for real-time medication administration error detection in a neonatal intensive care unit. Journal of the American Medical Informatics Association: JAMIA, 2018, 25, 555-563.	2.2	24
103	Big Data and Data Science in Critical Care. Chest, 2018, 154, 1239-1248.	0.4	184
104	Conjugated equine estrogen and medroxyprogesterone acetate are associated with decreased risk of breast cancer relative to bioidentical hormone therapy and controls. PLoS ONE, 2018, 13, e0197064.	1.1	7
105	Portable Phenotyping System: A Portable Machine-Learning Approach to i2b2 Obesity Challenge. , 2018, ,		3
106	Clinical Text Classification with Rule-based Features and Knowledge-guided Convolutional Neural Networks. , 2018, , .		9
107	Tensor factorization toward precision medicine. Briefings in Bioinformatics, 2017, 18, bbw026.	3.2	37
108	Bridging semantics and syntax with graph algorithms—state-of-the-art of extracting biomedical relations. Briefings in Bioinformatics, 2017, 18, 160-178.	3.2	60

#	Article	IF	CITATIONS
109	Tensor Factorization for Precision Medicine in Heart Failure with Preserved Ejection Fraction. Journal of Cardiovascular Translational Research, 2017, 10, 305-312.	1.1	34
110	Recurrent neural networks for classifying relations in clinical notes. Journal of Biomedical Informatics, 2017, 72, 85-95.	2.5	119
111	Natural Language Processing for EHR-Based Pharmacovigilance: A Structured Review. Drug Safety, 2017, 40, 1075-1089.	1.4	133
112	Identification of Four Novel Loci in Asthma in European American and African American Populations. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 456-463.	2.5	91
113	Contralateral Breast Cancer Event Detection Using Nature Language Processing. AMIA Annual Symposium proceedings, 2017, 2017, 1885-1892.	0.2	8
114	Efficient Queries of Stand-off Annotations for Natural Language Processing on Electronic Medical Records. Biomedical Informatics Insights, 2016, 8, BII.S38916.	4.6	4
115	Suboptimal Clinical Documentation in Young Children with Severe Obesity at Tertiary Care Centers. International Journal of Pediatrics (United Kingdom), 2016, 2016, 1-9.	0.2	6
116	Developing an Algorithm to Detect Early Childhood Obesity in Two Tertiary Pediatric Medical Centers. Applied Clinical Informatics, 2016, 07, 693-706.	0.8	39
117	Using Machine Learning to Predict Laboratory Test Results. American Journal of Clinical Pathology, 2016, 145, 778-788.	0.4	116
118	PheKB: a catalog and workflow for creating electronic phenotype algorithms for transportability. Journal of the American Medical Informatics Association: JAMIA, 2016, 23, 1046-1052.	2.2	284
119	Electronic Health Record Based Algorithm to Identify Patients with Autism Spectrum Disorder. PLoS ONE, 2016, 11, e0159621.	1.1	59
120	A GWAS Study on Liver Function Test Using eMERGE Network Participants. PLoS ONE, 2015, 10, e0138677.	1.1	18
121	Increasing the efficiency of trial-patient matching: automated clinical trial eligibility Pre-screening for pediatric oncology patients. BMC Medical Informatics and Decision Making, 2015, 15, 28.	1.5	82
122	An end-to-end hybrid algorithm for automated medication discrepancy detection. BMC Medical Informatics and Decision Making, 2015, 15, 37.	1.5	33
123	Automated clinical trial eligibility prescreening: increasing the efficiency of patient identification for clinical trials in the emergency department. Journal of the American Medical Informatics Association: JAMIA, 2015, 22, 166-178.	2.2	83
124	Automated detection of medication administration errors in neonatal intensive care. Journal of Biomedical Informatics, 2015, 57, 124-133.	2.5	27
125	Subgraph augmented non-negative tensor factorization (SANTF) for modeling clinical narrative text. Journal of the American Medical Informatics Association: JAMIA, 2015, 22, 1009-1019.	2.2	46
126	Desiderata for computable representations of electronic health records-driven phenotype algorithms. Journal of the American Medical Informatics Association: JAMIA, 2015, 22, 1220-1230.	2.2	110

#	Article	IF	CITATIONS
127	Automatic lymphoma classification with sentence subgraph mining from pathology reports. Journal of the American Medical Informatics Association: JAMIA, 2014, 21, 824-832.	2.2	54
128	Phenotyping for patient safety: algorithm development for electronic health record based automated adverse event and medical error detection in neonatal intensive care. Journal of the American Medical Informatics Association: JAMIA, 2014, 21, 776-784.	2.2	48
129	Developing and evaluating a machine learning based algorithm to predict the need of pediatric intensive care unit transfer for newly hospitalized children. Resuscitation, 2014, 85, 1065-1071.	1.3	72
130	Evaluating the impact of pre-annotation on annotation speed and potential bias: natural language processing gold standard development for clinical named entity recognition in clinical trial announcements. Journal of the American Medical Informatics Association: JAMIA, 2014, 21, 406-413.	2.2	50
131	Preparing an annotated gold standard corpus to share with extramural investigators for de-identification research. Journal of Biomedical Informatics, 2014, 50, 173-183.	2.5	29
132	Text Mining in Cancer Gene and Pathway Prioritization. Cancer Informatics, 2014, 13s1, CIN.S13874.	0.9	32
133	Semi-Supervised Learning to Identify UMLS Semantic Relations. AMIA Summits on Translational Science Proceedings, 2014, 2014, 67-75.	0.4	4
134	Large-scale evaluation of automated clinical note de-identification and its impact on information extraction. Journal of the American Medical Informatics Association: JAMIA, 2013, 20, 84-94.	2.2	67
135	Building gold standard corpora for medical natural language processing tasks. AMIA Annual Symposium proceedings, 2012, 2012, 144-53.	0.2	26
136	Identifying Patient Smoking Status from Medical Discharge Records. Journal of the American Medical Informatics Association: JAMIA, 2008, 15, 14-24.	2.2	283
137	A de-identifier for medical discharge summaries. Artificial Intelligence in Medicine, 2008, 42, 13-35.	3.8	65
138	Optimal motion generation of a flexible macro-micro manipulator using genetic algorithm based upon object space centered spherical coordinate. , 2007, , .		0
139	Evaluating the State-of-the-Art in Automatic De-identification. Journal of the American Medical Informatics Association: JAMIA, 2007, 14, 550-563.	2.2	331
140	Design and validation of a FHIR-based EHR-driven phenotyping toolbox. Journal of the American Medical Informatics Association: JAMIA, 0, , .	2.2	4