Christopher G Frost

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7274089/publications.pdf

Version: 2024-02-01

53794 54911 7,757 123 45 84 citations h-index g-index papers 168 168 168 6714 docs citations citing authors all docs times ranked

#	Article	IF	Citations
1	Pd(II)â€Mediated Câ^'H Activation for Cysteine Bioconjugation. Chemistry - A European Journal, 2022, 28, .	3.3	9
2	Stimuli responsive asymmetric catalysis by triggered pseudo-enantiomeric proligand release. Organic and Biomolecular Chemistry, 2022, 20, 2194-2199.	2.8	0
3	Ratiometric Electrochemistry: Improving the Robustness, Reproducibility and Reliability of Biosensors. Molecules, 2021, 26, 2130.	3.8	20
4	An Organophosphorus(III)-Selective Chemodosimeter for the Ratiometric Electrochemical Detection of Phosphines. Chemosensors, 2019, 7, 19.	3.6	2
5	Regioselective Transition-Metal-Catalyzed C–H Functionalization of Anilines. Synthesis, 2018, 50, 2693-2706.	2.3	24
6	Ratiometric electrochemical detection of hydrogen peroxide and glucose. Organic and Biomolecular Chemistry, 2017, 15, 2459-2466.	2.8	24
7	Ratiometric electrochemical detection of Pd••〢π interactions: application towards electrochemical molecular logic gates. Supramolecular Chemistry, 2017, 29, 749-757.	1.2	5
8	Remote C6-Selective Ruthenium-Catalyzed Câ \in "H Alkylation of Indole Derivatives via \ddot{l}_f -Activation. ACS Catalysis, 2017, 7, 2616-2623.	11.2	141
9	Rutheniumâ€Catalyzed <i>para</i> â€Selective Câ^'H Alkylation of Aniline Derivatives. Angewandte Chemie, 2017, 129, 15327-15331.	2.0	28
10	Rutheniumâ€Catalyzed <i>para</i> â€Selective Câ^'H Alkylation of Aniline Derivatives. Angewandte Chemie - International Edition, 2017, 56, 15131-15135.	13.8	108
11	Ruthenium-catalysed σ-activation for remote <i>meta</i> -selective Câ€"H functionalisation. Chemical Society Reviews, 2017, 46, 7145-7153.	38.1	285
12	Ratiometric electrochemical detection of \hat{l}^2 -galactosidase. Organic and Biomolecular Chemistry, 2017, 15, 7122-7126.	2.8	11
13	A Highly Regioselective Palladium atalyzed O,S Rearrangement of Cyclic Thiocarbonates. European Journal of Organic Chemistry, 2017, 2017, 6441-6444.	2.4	2
14	Ruthenium catalyzed remote C4-selective C–H functionalisation of carbazoles <i>via</i> Ïf-activation. Chemical Communications, 2017, 53, 13039-13042.	4.1	32
15	α-Halo carbonyls enable meta selective primary, secondary and tertiary C–H alkylations by ruthenium catalysis. Organic and Biomolecular Chemistry, 2017, 15, 5993-6000.	2.8	47
16	Beyond C2 and C3: Transition-Metal-Catalyzed Câ€"H Functionalization of Indole. ACS Catalysis, 2017, 7, 5618-5627.	11.2	351
17	A Peptide Nucleic Acid (PNA)â€DNA Ferrocenyl Intercalator for Electrochemical Sensing. Electroanalysis, 2017, 29, 917-922.	2.9	11
18	Mechanistic insight into ruthenium catalysed meta-sulfonation of 2-phenylpyridine. Catalysis Science and Technology, 2016, 6, 7068-7076.	4.1	44

#	Article	IF	CITATIONS
19	Copper Catalyzed Assembly of <i>N</i> â€Aryloxazolidinones: Synthesis of Linezolid, Tedizolid, and Rivaroxaban. European Journal of Organic Chemistry, 2016, 2016, 1305-1313.	2.4	12
20	Approaches towards molecular amplification for sensing. Analyst, The, 2016, 141, 3157-3218.	3.5	52
21	Use of the Hydantoin Directing Group in Ruthenium(II)-Catalyzed C–H Functionalization. Journal of Organic Chemistry, 2016, 81, 10081-10087.	3.2	37
22	Ruthenium(II)-Catalyzed C–H Functionalization Using the Oxazolidinone Heterocycle as a Weakly Coordinating Directing Group: Experimental and Computational Insights. ACS Catalysis, 2016, 6, 5520-5529.	11.2	87
23	Community Sewage Sensors towards Evaluation of Drug Use Trends: Detection of Cocaine in Wastewater with DNA-Directed Immobilization Aptamer Sensors. Scientific Reports, 2016, 6, 21024.	3.3	35
24	Rutheniumâ€Catalyzed <i>O</i> ―to <i>S</i> â€Alkyl Migration: A Pseudoreversible Barton–McCombie Pathway. Angewandte Chemie - International Edition, 2015, 54, 10944-10948.	13.8	17
25	Trans-Selective Rhodium Catalysed Conjugate Addition of Organoboron Reagents to Dihydropyranones. Molecules, 2015, 20, 6153-6166.	3.8	4
26	Catalytic meta-selective C–H functionalization to construct quaternary carbon centres. Chemical Communications, 2015, 51, 12807-12810.	4.1	153
27	Signal transduction and amplification through enzyme-triggered ligand release and accelerated catalysis. Chemical Science, 2015, 6, 4978-4985.	7.4	24
28	Community Sewage Sensors for Monitoring Public Health. Environmental Science &	10.0	56
29	A novel immobilization strategy for electrochemical detection of cancer biomarkers: DNA-directed immobilization of aptamer sensors for sensitive detection of prostate specific antigens. Analyst, The, 2015, 140, 2628-2633.	3.5	59
30	A Novel DNA Biosensor Using a Ferrocenyl Intercalator Applied to the Potential Detection of Human Population Biomarkers in Wastewater. Environmental Science & Environmental Science & 2015, 49, 5609-5617.	10.0	44
31	Directing Remote <i>Meta</i> -C–H Functionalization with Cleavable Auxiliaries. ACS Central Science, 2015, 1, 418-419.	11.3	48
32	Label-free impedimetric aptasensor with antifouling surface chemistry: A prostate specific antigen case study. Sensors and Actuators B: Chemical, 2015, 209, 306-312.	7.8	134
33	Ratiometric electrochemical detection of alkaline phosphatase. Chemical Communications, 2015, 51, 561-564.	4.1	142
34	Recent developments in selective C–H functionalisation. Organometallic Chemistry, 2015, , 54-87.	0.6	7
35	Robust and reusable supported palladium catalysts for cross-coupling reactions in flow. Catalysis Science and Technology, 2014, 4, 948.	4.1	48
36	Fine-tuning of ferrocene redox potentials towards multiplex DNA detection. New Journal of Chemistry, 2014, 38, 5260-5263.	2.8	22

#	Article	IF	CITATIONS
37	Silyl-protected dioxaborinanes: application in the Suzuki cross-coupling reaction. Organic and Biomolecular Chemistry, 2014, 12, 47-52.	2.8	8
38	Copper-Catalyzed One-Pot Synthesis of N-Aryl Oxazolidinones from Amino Alcohol Carbamates. Organic Letters, 2014, 16, 5020-5023.	4.6	40
39	Synthesis of Fluorescent Alanines by a Rhodiumâ€Catalysed Conjugate Addition of Arylboronic Acids to Dehydroalanine Derivatives. European Journal of Organic Chemistry, 2013, 2013, 550-556.	2.4	9
40	Ruthenium-Catalyzed C–H Functionalization of Arylpyrazoles: Regioselective Acylation with Acid Chlorides. Organic Letters, 2013, 15, 5862-5865.	4.6	58
41	Sequential Chelation-Assisted Aromatic C–H Functionalisation via Catalytic meta Sulfonation. Synlett, 2013, 24, 2687-2690.	1.8	20
42	Rhodium-catalysed enantioselective synthesis of 4-arylchroman-2-ones. Organic and Biomolecular Chemistry, 2012, 10, 32-35.	2.8	37
43	A simple and effective colorimetric technique for the detection of boronic acids and their derivatives. Analytical Methods, 2012, 4, 2215.	2.7	26
44	Ruthenium-Catalyzed Meta Sulfonation of 2-Phenylpyridines. Journal of the American Chemical Society, 2011, 133, 19298-19301.	13.7	457
45	The effect of reaction conditions on the nature of cadmium 1,3,5-benzenetricarboxylate metal–organic frameworks. Inorganica Chimica Acta, 2011, 366, 303-309.	2.4	18
46	Synthetic applications of rhodium catalysed conjugate addition. Chemical Society Reviews, 2010, 39, 2093.	38.1	313
47	Alternatives to Organoboron Reagents in Rhodiumâ€Catalyzed Conjugate Additions. Chemistry - an Asian Journal, 2010, 5, 386-396.	3.3	58
48	Catalytic Enantioselective Dieckmannâ€Type Annulation: Synthesis of Pyrrolidines with Quaternary Stereogenic Centers. Angewandte Chemie - International Edition, 2010, 49, 1825-1829.	13.8	21
49	A modular approach to catalytic synthesis using a dual-functional linker for Click and Suzuki coupling reactions. Tetrahedron Letters, 2010, 51, 3913-3917.	1.4	29
50	Exploring Rhodium-Catalysed Conjugate Addition of Chiral Alkenylboronates Using Chiral Olefin Ligands. Synthesis, 2010, 2010, 3243-3247.	2.3	12
51	Heterogeneous catalytic synthesis using microreactor technology. Green Chemistry, 2010, 12, 1687.	9.0	270
52	Rhodium-catalysed conjugate addition of arylboronic acids to enantiopure dehydroamino acid derivatives. Organic and Biomolecular Chemistry, 2010, 8, 5120.	2.8	16
53	Dipyridyl β-diketonate complexes: versatile polydentate metalloligands for metal–organic frameworks and hydrogen-bonded networks. Chemical Communications, 2010, 46, 5067.	4.1	53
54	Solid state interconversion of cages and coordination networks via conformational change of a semi-rigid ligand. Chemical Communications, 2010, 46, 5064.	4.1	25

#	Article	IF	Citations
55	A Practical Synthesis of α-Substituted tert-Butyl Acrylates from Meldrum's Acid and Aldehydes. Synthesis, 2009, 2009, 627-635.	2.3	9
56	Rhodium-Catalyzed 1,4-Additions to Enantiopure Acceptors: Asymmetric Synthesis of Functionalized Pyrrolizidinones. Organic Letters, 2009, 11, 2491-2494.	4.6	21
57	Easy-separable magnetic nanoparticle-supported Pd catalysts: Kinetics, stability and catalyst re-use. Journal of Catalysis, 2009, 268, 318-328.	6.2	105
58	The rhodium-catalysed 1,2-addition of arylboronic acids to aldehydes and ketones with sulfonated S-Phos. Tetrahedron Letters, 2009, 50, 7365-7368.	1.4	40
59	Sulfur-tagged metal–organic frameworks and their post-synthetic oxidation. Chemical Communications, 2009, , 4218.	4.1	98
60	Lewis Base-Promoted Hydrosilylation of Cyclic Malonates: Synthesis of \hat{l}^2 -Substituted Aldehydes and \hat{l}^3 -Substituted Amines. Journal of Organic Chemistry, 2009, 74, 3599-3602.	3.2	26
61	Rhodium Containing Magnetic Nanoparticles: Effective Catalysts for Hydrogenation and the 1,4-Addition of Boronic Acids. Catalysis Letters, 2008, 122, 68-75.	2.6	36
62	BINOLâ€3,3′â€Triflone <i>N</i> , <i>N</i> â€Dimethyl Phosphoramidites: Throughâ€Space ¹⁹ F, ³¹ P Spin–Spin Coupling with a Remarkable Dependency on Temperature and Solvent Internal Pressure. Chemistry - A European Journal, 2008, 14, 7808-7812.	3.3	33
63	Postâ€Synthetic Modification of Tagged Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2008, 47, 8482-8486.	13.8	276
64	Peptide modification through site-selective residue interconversion: application of the rhodium-catalysed 1,4-addition of aryl siloxanes and boronates. Tetrahedron, 2008, 64, 9528-9539.	1.9	28
65	Rhodium-catalysed 1,4-addition–halogenation: the crucial role of lithium halide. Tetrahedron Letters, 2008, 49, 6217-6219.	1.4	5
66	Subtle structural variation in copper metal-organic frameworks: syntheses, structures, magnetic properties and catalytic behaviour. Dalton Transactions, 2008, , 6788.	3.3	48
67	Enantioselective rhodium-catalysed 1,4-additions of 2-heteroarylzinc donors using Me-DUPHOS. Chemical Communications, 2008, , 3795.	4.1	21
68	Rhodium catalysed conjugate addition of a chiral alkenyltrifluoroborate salt: the enantioselective synthesis of hermitamides A and B. Organic and Biomolecular Chemistry, 2008, 6, 4340.	2.8	24
69	Tandem and Domino Catalytic Strategies for Enantioselective Synthesis. Synthesis, 2007, 2007, 1-21.	2.3	44
70	Site-selective modification of peptides using rhodium and palladium catalysis: complementary electrophilic and nucleophilic arylation. Chemical Communications, 2007, , 3903.	4.1	45
71	Tandem Molybdenum Catalyzed Hydrosilylations:  An Expedient Synthesis of β-Aryl Aldehydes. Organic Letters, 2007, 9, 4259-4261.	4.6	22
72	Rhodium-Catalyzed Conjugate Additionâ^'Enantioselective Protonation:  The Synthesis of α,α'-Dibenzyl Esters. Organic Letters, 2007, 9, 2119-2122.	4.6	57

#	Article	IF	CITATIONS
73	A New Method for Constructing Quaternary Carbon Centres: Tandem Rhodium-Catalysed 1,4-Addition/Intramolecular Cyclisation. Advanced Synthesis and Catalysis, 2007, 349, 432-440.	4.3	19
74	Switching stereoselectivity in rhodium-catalysed 1,4-additions: the asymmetric synthesis of 2-substituted pyrrolizidinones. Chemical Communications, 2006, , 4389.	4.1	13
7 5	Phosphine–olefin ligands: a facile dehydrogenative route to catalytically active rhodium complexes. Chemical Communications, 2006, , 3408-3410.	4.1	51
76	Rhodium-catalysed addition of organotrialkoxysilanes to \hat{l}_{\pm} -substituted acrylic esters. Organic and Biomolecular Chemistry, 2006, 4, 3235-3241.	2.8	30
77	Structure and reactivity of new phosphine ligands containing the hemi-labile sulfone moiety. Dalton Transactions, 2006, , 2251.	3.3	16
78	The \hat{l}_{\pm} -arylation of \hat{l}_{\pm} -bromo- and \hat{l}_{\pm} -chloroenones using palladium-catalysed cross-coupling. Tetrahedron Letters, 2006, 47, 2863-2866.	1.4	22
79	Chelating Phosphane–Boranes as Hemilabile Ligands – Synthesis of[Mn(CO)3(η2-H3B·dppm)][BArF4] and [Mn(CO)4(η1-H3B·dppm)][BArF4]. European Journal of Inorganic Chemistry, 2006, 2006, 4068-4073.	2.0	18
80	Indium Triflate Catalysed Ene and Friedel Crafts Additions to α-Imino Esters: A One-Pot Synthesis of α-Amino Acid Derivatives. Letters in Organic Chemistry, 2006, 3, 228-230.	0.5	5
81	Ruthenium (II) complexes of the chelating phosphine borane H2ClBÂ-dppm. Journal of Organometallic Chemistry, 2005, 690, 2829-2834.	1.8	21
82	Rhodium Catalyzed Tandem Conjugate Addition-Protonation: An Enantioselective Synthesis of 2-Substituted Succinic Esters ChemInform, 2005, 36, no.	0.0	0
83	Rhodium-Catalysed 1,4-Additions in Water: Synthesis of Succinic Esters and \hat{l}^2 2-Amino Acid Derivatives. Synlett, 2004, 2004, 2022-2024.	1.8	3
84	An electrochemical study of enzymatic oligonucleotide digestion. Bioelectrochemistry, 2004, 63, 307-310.	4.6	34
85	An electrochemical gene detection assay utilising T7 exonuclease activity on complementary probe–target oligonucleotide sequences. Electrochemistry Communications, 2004, 6, 1227-1232.	4.7	19
86	Rhodium catalysed tandem conjugate addition-protonation: an enantioselective synthesis of 2-substituted succinic estersElectronic supplementary information (ESI) available: experimental procedures and HPLC data. See http://www.rsc.org/suppdata/cc/b4/b406905f/. Chemical Communications, 2004, , 1984.	4.1	51
87	Transition metal complexes of the chelating phosphine borane ligand Ph2PCH2Ph2P·BH3. Dalton Transactions, 2004, , 3883-3892.	3.3	76
88	Synthesis of Functionalised Phenylalanines Using Rhodium Catalysis in Water. Advanced Synthesis and Catalysis, 2003, 345, 353-355.	4.3	25
89	Catalytic Arylation of Sulfamoyl Chlorides: A Practical Synthesis of Sulfonamides ChemInform, 2003, 34, no.	0.0	O
90	Enantioselective Rhodium-Catalyzed Addition of Boronic Acids Using C2-Symmetric Aryl Diphosphite Ligands ChemInform, 2003, 34, no.	0.0	0

#	Article	IF	CITATIONS
91	Enantioselective rhodium-catalysed addition of boronic acids using C2-symmetric aryl diphosphite ligands. Journal of Organometallic Chemistry, 2003, 680, 206-211.	1.8	45
92	Diphosphine mono-sulfides: readily available chiral monophosphines. Tetrahedron: Asymmetry, 2003, 14, 705-710.	1.8	20
93	Catalytic Arylation of Sulfamoyl Chlorides: A Practical Synthesis of Sulfonamides. Synlett, 2002, 2002, 1928-1930.	1.8	42
94	Silver Phosphanes Partnered with Carborane Monoanions: Synthesis, Structures and Use as Highly Active Lewis Acid Catalysts in a Hetero-Diels–Alder Reaction. Chemistry - A European Journal, 2002, 8, 2088.	3.3	122
95	Counterion effects in indium-catalysed aromatic electrophilic substitution reactions. Tetrahedron Letters, 2002, 43, 4789-4791.	1.4	64
96	Rhodium catalysed addition of boronic acids to anhydrides: a new method for the synthesis of ketones. Chemical Communications, 2001, , 2316-2317.	4.1	57
97	Title is missing!. Chemical Communications, 2001, , 2286-2287.	4.1	40
98	Chelating Monoborane Phosphines:  Rational and High-Yield Synthesis of [(COD)Rh{(η2-BH3)Ph2PCH2PPh2}][PF6] (COD = 1,5-cyclooctadiene). Organometallics, 2001, 20, 4434-4436.	2.3	48
99	Rhodium-catalysed aryl transfer to aldehydes: counterion effects with nitrogen containing ligands. Tetrahedron Letters, 2001, 42, 6957-6960.	1.4	93
100	Efficient aromatic and heteroatom acylations using catalytic indium complexes with lithium perchlorate. Tetrahedron Letters, 2001, 42, 773-775.	1.4	75
101	Indium-Catalysed Aryl and Alkyl Sulfonylation of Aromatics. Synlett, 2001, 2001, 0830-0832.	1.8	54
102	Probing subtle ligand effects in the enantioselective transfer hydrogenation of ketones. Tetrahedron: Asymmetry, 2000, 11, 1845-1848.	1.8	22
103	Advances in indium-catalysed organic synthesis. Journal of the Chemical Society, Perkin Transactions 1, 2000, , 3015-3019.	1.3	193
104	Synthesis of functionalised (triorganostannyl)tetrazoles: supramolecular structures of n-[2-(triorganostannyl)tetrazol-5-yl]pyridine (nâ€=â€2, 3 or 4)â€. Dalton Transactions RSC, 2000, , 663-669.	2.3	49
105	Indium Triflate: An Efficient Catalyst For Acylation Reactions. Synlett, 1999, 1999, 1743-1744.	1.8	173
106	Catalytic asymmetric hydrosilylation of ketones using mixed-ligand ruthenium complexes. Tetrahedron Letters, 1999, 40, 5617-5620.	1.4	33
107	Indium triflate-an efficient catalyst for hetero Diels-Alder reactions. Tetrahedron Letters, 1999, 40, 5621-5624.	1.4	80
108	Palladium catalysed mono-N-arylation of enantiopure diamines. Tetrahedron: Asymmetry, 1999, 10, 1831-1834.	1.8	23

#	Article	IF	Citations
109	Taxane diterpenes 5: Synthesis of the A- and C-rings: An unusual rearrangement of an N-hydroxyimino lactone. Tetrahedron, 1999, 55, 6435-6452.	1.9	23
110	Recent developments in aromatic heteroatom coupling reactions. Journal of the Chemical Society Perkin Transactions 1, 1998, , 2615.	0.9	68
111	Iterative Amination Strategy in the Synthesis of Peptidomimetics. Chemistry Letters, 1997, 26, 1159-1160.	1.3	6
112	Taxane diterpenes 1. Control of relative and absolute stereochemistry in intramolecular pyrylium ylide-alkene cyclizations for the synthesis of taxol precursors. Tetrahedron, 1996, 52, 14081-14102.	1.9	34
113	Concise synthesis of taxol a-ring components: Remote diastereoselective additions of alkenyl lithiums to aldehydes. Tetrahedron Letters, 1996, 37, 9139-9142.	1.4	18
114	Catalytic applications of transition metals in organic synthesis. Contemporary Organic Synthesis, 1995, 2, 65.	1.5	6
115	Enantiomerically Pure Acetals as Ligands for Asymmetric Catalysis. Synlett, 1994, 1994, 551-552.	1.8	32
116	Preparation of novel Sulfur and phosphorus containing oxazolines as ligands for asymmetric catalysis. Tetrahedron, 1994, 50, 799-808.	1.9	94
117	Sulfides tethered to oxazolines: Ligands for enantioselective catalysis. Tetrahedron Letters, 1993, 34, 7793-7796.	1.4	74
118	Enantioselective palladium catalysed allylic substitution with thienyl oxazoline ligands. Tetrahedron Letters, 1993, 34, 2015-2018.	1.4	108
119	Asymmetric palladium catalysed allylic substitution using phosphorus containing oxazoline ligands. Tetrahedron Letters, 1993, 34, 3149-3150.	1.4	438
120	Asymmetric addition of diethylzinc to aromatic aldehydes using enantiomerically pure hydroxymethyl oxazoline ligands. Tetrahedron: Asymmetry, 1993, 4, 649-650.	1.8	28
121	Enantioselective palladium catalysed allylic substitution with sulfur-containing oxazoline ligands. Tetrahedron: Asymmetry, 1993, 4, 1785-1788.	1.8	54
122	The Preparation of Functionalised Aryl Phosphines from Aryl Fluorides by Nucleophilic Aromatic Substitution with Potassium Diphenylphosphide. Synlett, 1993, 1993, 509-510.	1.8	32
123	Selectivity in palladium catalysed allylic substitution. Tetrahedron: Asymmetry, 1992, 3, 1089-1122.	1.8	567