
Changyang She

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7273449/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Secure Transmission Rate of Short Packets With Queueing Delay Requirement. IEEE Transactions on Wireless Communications, 2022, 21, 203-218.	9.2	11
2	Learning to Optimize User Association and Spectrum Allocation With Partial Observation in mmWave-Enabled UAV Networks. IEEE Transactions on Wireless Communications, 2022, 21, 5873-5888.	9.2	3
3	Age of Information: The Multi-Stream M/G/1/1 Non-Preemptive System. IEEE Transactions on Communications, 2022, 70, 2328-2341.	7.8	10
4	Risk-Resistant Resource Allocation for eMBB and URLLC Coexistence Under M/G/1 Queueing Model. IEEE Transactions on Vehicular Technology, 2022, 71, 6279-6290.	6.3	9
5	Training Beam Sequence Design for mmWave Tracking Systems With and Without Environmental Knowledge. IEEE Transactions on Wireless Communications, 2022, 21, 10780-10795.	9.2	2
6	Deep Learning for Radio Resource Allocation With Diverse Quality-of-Service Requirements in 5G. IEEE Transactions on Wireless Communications, 2021, 20, 2309-2324.	9.2	48
7	Energy-Aware Task Offloading and Resource Allocation for Time-Sensitive Services in Mobile Edge Computing Systems. IEEE Transactions on Vehicular Technology, 2021, 70, 10925-10940.	6.3	38
8	A Tutorial on Ultrareliable and Low-Latency Communications in 6G: Integrating Domain Knowledge Into Deep Learning. Proceedings of the IEEE, 2021, 109, 204-246.	21.3	182
9	Deep Learning for Distributed User Association in Massive Industrial IoT Networks. , 2021, , .		2
10	Grand Challenges in Signal Processing for Communications. Frontiers in Signal Processing, 2021, 1, .	1.7	3
11	Knowledge-Assisted Deep Reinforcement Learning in 5G Scheduler Design: From Theoretical Framework to Implementation. IEEE Journal on Selected Areas in Communications, 2021, 39, 2014-2028.	14.0	37
12	Machine Learning for Massive Industrial Internet of Things. IEEE Wireless Communications, 2021, 28, 81-87.	9.0	22
13	A Bayesian Receiver With Improved Complexity-Reliability Trade-Off in Massive MIMO Systems. IEEE Transactions on Communications, 2021, 69, 6251-6266.	7.8	7
14	Edge-Wise Gated Graph Neural Network for User Association in Massive URLLC. , 2021, , .		1
15	Intelligent Communications for Tactile Internet in 6G: Requirements, Technologies, and Challenges. IEEE Communications Magazine, 2021, 59, 82-88.	6.1	19
16	Prediction and Communication Co-Design for Ultra-Reliable and Low-Latency Communications. IEEE Transactions on Wireless Communications, 2020, 19, 1196-1209.	9.2	55
17	Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G Networks. IEEE Network, 2020, 34, 219-225.	6.9	80
18	Computation Offloading for IoT in C-RAN: Optimization and Deep Learning. IEEE Transactions on Communications, 2020, 68, 4565-4579.	7.8	25

CHANGYANG SHE

#	Article	IF	CITATIONS
19	Energy Efficient Resource Allocation for Hybrid Services With Future Channel Gains. IEEE Transactions on Green Communications and Networking, 2020, 4, 165-179.	5.5	9
20	Unsupervised Learning for Secure Short-Packet Transmission Under Statistical QoS Constraints. , 2020, , .		2
21	Ultra-Reliable and Low-Latency Communications: Prediction and Communication Co-Design. , 2019, , .		7
22	Deep Learning for Hybrid 5G Services in Mobile Edge Computing Systems: Learn From a Digital Twin. IEEE Transactions on Wireless Communications, 2019, 18, 4692-4707.	9.2	166
23	Improving Energy Efficiency of Ultra-Reliable Low-Latency and Delay Tolerant Services in Mobile Edge Computing Systems. , 2019, , .		4
24	Cross-Layer Design for Mission-Critical IoT in Mobile Edge Computing Systems. IEEE Internet of Things Journal, 2019, 6, 9360-9374.	8.7	41
25	Ultra-Reliable and Low-Latency Communications in Unmanned Aerial Vehicle Communication Systems. IEEE Transactions on Communications, 2019, 67, 3768-3781.	7.8	96
26	Toward Ultrareliable Low-Latency Communications: Typical Scenarios, Possible Solutions, and Open Issues. IEEE Vehicular Technology Magazine, 2019, 14, 94-102.	3.4	66
27	URLLC in Large-Scale Wireless Networks with Time and Frequency Diversities. , 2019, , .		1
28	Optimizing Resource Allocation for 5G Services with Diverse Quality-of-Service Requirements. , 2019, , .		6
29	Optimizing Resource Allocation in the Short Blocklength Regime for Ultra-Reliable and Low-Latency Communications. IEEE Transactions on Wireless Communications, 2019, 18, 402-415.	9.2	148
30	Joint Uplink and Downlink Resource Configuration for Ultra-Reliable and Low-Latency Communications. IEEE Transactions on Communications, 2018, 66, 2266-2280.	7.8	104
31	Cross-Layer Optimization for Ultra-Reliable and Low-Latency Radio Access Networks. IEEE Transactions on Wireless Communications, 2018, 17, 127-141.	9.2	218
32	Burstiness-Aware Bandwidth Reservation for Ultra-Reliable and Low-Latency Communications in Tactile Internet. IEEE Journal on Selected Areas in Communications, 2018, 36, 2401-2410.	14.0	51
33	Delay Analysis and Computing Offloading of URLLC in Mobile Edge Computing Systems. , 2018, , .		9
34	Predictive Resource Allocation with Coarse-Grained Mobility Pattern and Traffic Load Information. , 2018, , .		3
35	Burstiness Aware Bandwidth Reservation for Uplink Transmission in Tactile Internet. , 2018, , .		5
36	Improving Network Availability of Ultra-Reliable and Low-Latency Communications With Multi-Connectivity. IEEE Transactions on Communications, 2018, 66, 5482-5496.	7.8	56

CHANGYANG SHE

#	Article	IF	CITATIONS
37	UAV-Assisted Uplink Transmission for Ultra-Reliable and Low-Latency Communications. , 2018, , .		29
38	Retransmission Policy with Frequency Hopping for Ultra-Reliable and Low-Latency Communications. , 2018, , .		4
39	Radio Resource Management for Ultra-Reliable and Low-Latency Communications. , 2017, 55, 72-78.		243
40	Exploiting Multi-User Diversity for Ultra-Reliable and Low-Latency Communications. , 2017, , .		13
41	Energy-Efficient Resource Allocation for Ultra-Reliable and Low-Latency Communications. , 2017, , .		31
42	Available Range of Different Transmission Modes for Ultra-Reliable and Low-Latency Communications. , 2017, , .		5
43	Energy efficiency-QoS relation and its application in wireless networks. Scientia Sinica Informationis, 2017, 47, 607.	0.4	1
44	Ensuring the Quality-of-Service of Tactile Internet. , 2016, , .		24
45	Uplink Transmission Design with Massive Machine Type Devices in Tactile Internet. , 2016, , .		35
46	Cross-Layer Transmission Design for Tactile Internet. , 2016, , .		29
47	Energy efficient design for tactile internet. , 2016, , .		12
48	Energy Efficiency and Delay in Wireless Systems: Is Their Relation Always a Tradeoff?. IEEE Transactions on Wireless Communications, 2016, 15, 7215-7228.	9.2	19
49	Context aware energy efficient optimization for video on-demand service over wireless networks. , 2015, , .		10
50	Optimal EE-delay relation in wireless systems. , 2015, , .		1
51	Energy-Efficient Resource Allocation for MIMO-OFDM Systems Serving Random Sources With Statistical QoS Requirement. IEEE Transactions on Communications, 2015, 63, 4125-4141.	7.8	25
52	Energy-efficient resource allocation of wireless systems with statistical QoS requirement. , 2014, , .		1
53	Energy-efficient configuration of frequency resources in multi-cell MIMO-OFDM networks. , 2012, , .		О