
Adrien Quintard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7273293/publications.pdf Version: 2024-02-01

ADDIEN OHINTADD

#	Article	IF	CITATIONS
1	Iron Cyclopentadienone Complexes: Discovery, Properties, and Catalytic Reactivity. Angewandte Chemie - International Edition, 2014, 53, 4044-4055.	7.2	163
2	An Iron/Amineâ€Catalyzed Cascade Process for the Enantioselective Functionalization of Allylic Alcohols. Angewandte Chemie - International Edition, 2013, 52, 12883-12887.	7.2	140
3	A Step into an eco ompatible Future: Iron―and Cobaltâ€catalyzed Borrowing Hydrogen Transformation. ChemSusChem, 2016, 9, 28-30.	3.6	126
4	Highly Enantioselective Direct Vinylogous Michael Addition of Î ³ -Butenolide to Enals. Organic Letters, 2011, 13, 1540-1543.	2.4	125
5	Access to High Levels of Molecular Complexity by Oneâ€Pot Iridium/Enamine Asymmetric Catalysis. Angewandte Chemie - International Edition, 2011, 50, 2354-2358.	7.2	116
6	Catalytic enantioselective OFF ↔ ON activation processes initiated by hydrogen transfer: concepts and challenges. Chemical Communications, 2016, 52, 10456-10473.	2.2	93
7	Organocatalyzed Conjugate Addition of Carbonyl Compounds to Nitrodienes/Nitroenynes and Synthetic Applications. Advanced Synthesis and Catalysis, 2010, 352, 667-695.	2.1	88
8	Diversityâ€Oriented Synthesis towards Conceptually New Highly Modular Aminal–Pyrrolidine Organocatalysts. Chemistry - A European Journal, 2008, 14, 7504-7507.	1.7	76
9	Asymmetric Organocatalytic 1,6â€Conjugate Addition of Aldehydes to Dienic Sulfones. Angewandte Chemie - International Edition, 2011, 50, 5095-5098.	7.2	70
10	Asymmetric Catalytic Alkynylation of Acetaldehyde: Application to the Synthesis of (+)â€Tetrahydropyrenophorol. Angewandte Chemie - International Edition, 2012, 51, 6704-6708.	7.2	66
11	Aminal–Pyrrolidine Organocatalysts – Highly Efficient and Modular Catalysts for αâ€Functionalization of Carbonyl Compounds. European Journal of Organic Chemistry, 2010, 2010, 927-936.	1.2	59
12	Copper-Catalyzed Enantioselective 1,4-Addition to α,β-Unsaturated Aldehydes. Organic Letters, 2010, 12, 1988-1991.	2.4	55
13	Triple Iron/Copper/Iminium Activation for the Efficient Redox Neutral Catalytic Enantioselective Functionalization of Allylic Alcohols. ACS Catalysis, 2016, 6, 5236-5244.	5.5	55
14	Enantioselective Cascade Formal Reductive Insertion of Allylic Alcohols into the C(O)–C Bond of 1,3-Diketones: Ready Access to Synthetically Valuable 3-Alkylpentanol Units. Organic Letters, 2014, 16, 2802-2805.	2.4	53
15	Organocatalytic Addition on 1,2â€Bis(sulfone)vinylenes Leading to an Unprecedented Rearrangement. Chemistry - A European Journal, 2009, 15, 11109-11113.	1.7	51
16	Chemically Fueled Three-State Chiroptical Switching Supramolecular Gel with Temporal Control. Journal of the American Chemical Society, 2021, 143, 12650-12657.	6.6	42
17	Highly Enantioselective Oneâ€Pot Copperâ€Catalyzed 1,4 Addition/Organocatalyzed αâ€Substitution of Enals. Advanced Synthesis and Catalysis, 2010, 352, 1856-1860.	2.1	40
18	Asymmetric addition of α-hetero-disubstituted aldehydes to vinyl sulfones; formation of highly functionalized tetrasubstituted carbon centres. Chemical Communications, 2010, 46, 4085.	2.2	40

Adrien Quintard

#	Article	IF	CITATIONS
19	1,2-Sulfone rearrangement in organocatalytic reactions. Organic and Biomolecular Chemistry, 2011, 9, 1407.	1.5	39
20	Highly enantioselective organocascade intermolecular iminium/enamine Michael addition on enals. Chemical Communications, 2011, 47, 7212.	2.2	39
21	Asymmetric Catalytic Synthesis of the Proposed Structure of Trocheliophorolide B. Organic Letters, 2012, 14, 4698-4700.	2.4	37
22	Origin of the Enantioselectivity in Organocatalytic Michael Additions of βâ€Ketoamides to α,βâ€Unsaturated Carbonyls: A Combined Experimental, Spectroscopic and Theoretical Study. Chemistry - A European Journal, 2015, 21, 778-790.	1.7	35
23	Recent Achievements in Enantioselective Borrowing Hydrogen by the Combination of Iron- and Organocatalysis. Chimia, 2016, 70, 97.	0.3	35
24	Synergistic Cu–amine catalysis for the enantioselective synthesis of chiral cyclohexenones. Chemical Communications, 2015, 51, 9523-9526.	2.2	30
25	Bicatalyzed Three-Component Stereoselective Decarboxylative Fluoro-Aldolization for the Construction of Elongated Fluorohydrins. ACS Catalysis, 2017, 7, 5513-5517.	5.5	29
26	Conformationally Stabilized Catalysts by Fluorine Insertion: Tool for Enantioselectivity Improvement. Chemistry - A European Journal, 2011, 17, 13433-13437.	1.7	28
27	Multicatalytic Enantioselective Borrowing Hydrogen δ-Lactonization Strategy from β-Keto Esters and Allylic Alcohols. Synthesis, 2018, 50, 785-792.	1.2	28
28	Organocatalyst-mediated enantioselective intramolecular Michael addition of aldehydes to vinyl sulfones. Tetrahedron: Asymmetry, 2010, 21, 1666-1673.	1.8	27
29	Synthesis of new calix[4]arene based chiral ligands bearing β-amino alcohol groups and their application in asymmetric transfer hydrogenation. Tetrahedron: Asymmetry, 2007, 18, 1926-1933.	1.8	26
30	Activation of 1,2- and 1,3-Ketoamides with Thiourea Organocatalyst for the Enantioselective Domino Synthesis of Functionalized Cyclohexanes. Synthesis, 2013, 45, 1659-1666.	1.2	24
31	Didecarboxylative Ironâ€Catalyzed Bidirectional Aldolization towards Diversityâ€Oriented Ketodiol Synthesis. Chemistry - A European Journal, 2015, 21, 14717-14722.	1.7	18
32	Modular Enantioselective Synthesis of an Advanced Pentahydroxy Intermediate of Antimalarial Bastimolide A and of Fluorinated and Chlorinated Analogues. Organic Letters, 2018, 20, 5274-5277.	2.4	18
33	Development of copper-catalyzed enantioselective decarboxylative aldolization for the preparation of perfluorinated 1,3,5-triols featuring supramolecular recognition properties. Chemical Science, 2020, 11, 1629-1635.	3.7	18
34	Organocatalytic carbon dioxide fixation to epoxides by perfluorinated 1,3,5-triols catalysts. Organic and Biomolecular Chemistry, 2020, 18, 2637-2640.	1.5	17
35	Dissipative Acid-Fueled Reprogrammable Supramolecular Materials. ACS Applied Materials & Interfaces, 2022, 14, 24720-24728.	4.0	16
36	Catalytic strategies towards 1,3-polyol synthesis by enantioselective cascades creating multiple alcohol functions. Organic and Biomolecular Chemistry, 2020, 18, 1025-1035.	1.5	15

#	Article	IF	CITATIONS
37	Organo―and Iron(0) Catalysis for an Enantioselective Michael Addition–Hemiketalization–Fragmentation Sequence to Protected ωâ€Hydroxyâ€nitroketones. Advanced Synthesis and Catalysis, 2016, 358, 3362-3367.	2.1	14
38	Organo―and Copperâ€Multiâ€Catalyzed Pseudo Fourâ€Component Access to <i>gem</i> â€Difluorohydrins. European Journal of Organic Chemistry, 2018, 2018, 3697-3700.	1.2	14
39	Enantioselective Synthesis of Mediumâ€Sizedâ€Ring Lactones by Organocatalytic Michael Addition Followed by Reductively Initiated Fragmentation. European Journal of Organic Chemistry, 2015, 2015, 5709-5711.	1.2	13
40	Strategic Stereoselective Halogen (F, Cl) Insertion: A Tool to Enhance Supramolecular Properties in Polyols. Chemistry - A European Journal, 2019, 25, 15098-15105.	1.7	13
41	Discovery of Eco-compatible Synthetic Paths by a Multi-catalysis Approach. Chimia, 2018, 72, 580.	0.3	12
42	Indirect Tertiary Alcohol Enantiocontrol by Acylative Organocatalytic Kinetic Resolution. Organic Letters, 2021, 23, 4332-4336.	2.4	12
43	Acyl Transfer Strategies as Transient Activations for Enantioselective Synthesis. Synthesis, 2019, 51, 1923-1934.	1.2	11
44	Enantioselective Ir-Catalyzed Bidirectional Reductive Coupling. Organic Letters, 2019, 21, 453-456.	2.4	11
45	Ironâ€Based Multiâ€Catalysis: Eco ompatible Alternative for Complex Molecules Synthesis. Chemistry - A European Journal, 2021, 27, 89-105.	1.7	11
46	Impact of the Difluoromethylene Group (CF2) in OrganocatalyzedÂAcylative Kinetic Resolution ofÂα,αâ€Ðifluorohydrins. Angewandte Chemie - International Edition, 2021, 60, 24924-24929.	7.2	8
47	Redox-Neutral 1,3-Diol Synthesis by Base-Promoted Diastereoselective Alcohol–Aldolization. Organic Letters, 2020, 22, 7197-7201.	2.4	6
48	Threeâ€Component Multiâ€Catalytic Enantioselective Oxaâ€Michael/Aldolization Sequence and Application to (+)â€Yashabushitriol Synthesis. European Journal of Organic Chemistry, 2020, 2020, 2493-2496.	1.2	5
49	Copper Catalyzed Decarboxylative Functionalization of Ketoacids. Chemical Record, 2021, , .	2.9	4
50	Trichloroacetic acid fueled practical amine purifications. Beilstein Journal of Organic Chemistry, 2022, 18, 225-231.	1.3	4
51	Organocatalytic Activation of Diethyl Glutaconate for the Diastereo- and Enantioselective Assembly of NH-Free 2,3,4-Trisubstituted Pyrrolidines. Organic Letters, 2017, 19, 722-725.	2.4	3
52	Multiâ€catalytic Enantioselective Synthesis of 1,3â€Diols Containing a Tetrasubstituted Fluorinated Stereocenter. European Journal of Organic Chemistry, 2022, 2022, .	1.2	3
53	Development of Multiâ€Catalytic Strategies Based on the Combination between Iron″Copper―and Organoâ€Catalysis. Israel Journal of Chemistry, 2021, 61, 278-288.	1.0	2
54	Mössbauer Spectroscopic and Computational Investigation of An Iron Cyclopentadienone Complex. Inorganic Chemistry, 2021, 60, 11192-11199.	1.9	2

Adrien Quintard

#	Article	IF	CITATIONS
55	Enantioselective Synthesis of Acyclic Stereotriads Featuring Fluorinated Tetrasubstituted Stereocenters. Chemistry - A European Journal, 2021, 28, e202103874.	1.7	1
56	Frontispiece: Ironâ€Based Multiâ€Catalysis: Ecoâ€Compatible Alternative for Complex Molecules Synthesis. Chemistry - A European Journal, 2021, 27, .	1.7	0
57	Impact of the Difluoromethylene Group (CF2) in OrganocatalyzedÂAcylative Kinetic Resolution ofÂα,αâ€Difluorohydrins. Angewandte Chemie, 2021, 133, 25128.	1.6	Ο
58	Enantiocontrol over Acyclic Quaternary Stereocenters by Acylative Organocatalyzed Kinetic Resolution. European Journal of Organic Chemistry, 2022, 2022, .	1.2	0