David Lyden

List of Publications by Citations

Source: https://exaly.com/author-pdf/7273170/david-lyden-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

31,899 164 56 152 h-index g-index citations papers 6.86 36,925 164 20.1 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
152	Tumour exosome integrins determine organotropic metastasis. <i>Nature</i> , 2015 , 527, 329-35	50.4	2614
151	Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. <i>Nature Medicine</i> , 2012 , 18, 883-91	50.5	2530
150	VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. <i>Nature</i> , 2005 , 438, 820-7	50.4	2409
149	Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. <i>Nature Medicine</i> , 2001 , 7, 1194-201	50.5	1633
148	Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. <i>Nature Cell Biology</i> , 2015 , 17, 816-26	23.4	1533
147	Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. <i>Cell</i> , 2002 , 109, 625-37	56.2	1498
146	Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. <i>Nature Medicine</i> , 2003 , 9, 702-12	50.5	1404
145	Tumor response to radiotherapy regulated by endothelial cell apoptosis. <i>Science</i> , 2003 , 300, 1155-9	33.3	1260
144	Double-stranded DNA in exosomes: a novel biomarker in cancer detection. <i>Cell Research</i> , 2014 , 24, 766	-924.7	987
143	The metastatic niche: adapting the foreign soil. <i>Nature Reviews Cancer</i> , 2009 , 9, 285-93	31.3	939
142	Extracellular Vesicles in Cancer: Cell-to-Cell Mediators of Metastasis. <i>Cancer Cell</i> , 2016 , 30, 836-848	24.3	931
141	Pre-metastatic niches: organ-specific homes for metastases. <i>Nature Reviews Cancer</i> , 2017 , 17, 302-317	31.3	815
140	Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. <i>Nature</i> , 1999 , 401, 670-7	50.4	781
139	The perivascular niche regulates breast tumour dormancy. <i>Nature Cell Biology</i> , 2013 , 15, 807-17	23.4	736
138	Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. <i>Nature Cell Biology</i> , 2018 , 20, 332-343	23.4	686
137	CD133 expression is not restricted to stem cells, and both CD133+ and CD133- metastatic colon cancer cells initiate tumors. <i>Journal of Clinical Investigation</i> , 2008 , 118, 2111-20	15.9	654
136	Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. <i>Nature Medicine</i> , 2004 , 10, 64-71	50.5	631

(2016-2002)

135	Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy?. <i>Nature Reviews Cancer</i> , 2002 , 2, 826-35	31.3	599
134	Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. <i>Journal of Experimental Medicine</i> , 2001 , 193, 1005-14	16.6	582
133	Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes. <i>Nature Medicine</i> , 2006 , 12, 557-67	50.5	567
132	Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1(+) stem cells from bone-marrow microenvironment. <i>Nature Medicine</i> , 2002 , 8, 841-9	50.5	553
131	Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. <i>Nature</i> , 2010 , 468, 310-5	50.4	551
130	Preparing the "soil": the premetastatic niche. Cancer Research, 2006, 66, 11089-93	10.1	505
129	The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts. <i>Seminars in Cancer Biology</i> , 2011 , 21, 139-46	12.7	469
128	Exosome-Mediated Metastasis: Communication from a Distance. <i>Developmental Cell</i> , 2019 , 49, 347-360	10.2	425
127	A Human Pluripotent Stem Cell-based Platform to Study SARS-CoV-2 Tropism and Model Virus Infection in Human Cells and Organoids. <i>Cell Stem Cell</i> , 2020 , 27, 125-136.e7	18	338
126	Packaging and transfer of mitochondrial DNA via exosomes regulate escape from dormancy in hormonal therapy-resistant breast cancer. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, E9066-E9075	11.5	317
125	AC133/CD133/Prominin-1. International Journal of Biochemistry and Cell Biology, 2005, 37, 715-9	5.6	311
124	Migratory neighbors and distant invaders: tumor-associated niche cells. <i>Genes and Development</i> , 2008 , 22, 559-74	12.6	305
123	The IL-6/JAK/Stat3 feed-forward loop drives tumorigenesis and metastasis. <i>Neoplasia</i> , 2013 , 15, 848-62	6.4	289
122	Extracellular Vesicle and Particle Biomarkers Define Multiple Human Cancers. <i>Cell</i> , 2020 , 182, 1044-106	156.128	288
121	Young adult bone marrow-derived endothelial precursor cells restore aging-impaired cardiac angiogenic function. <i>Circulation Research</i> , 2002 , 90, E89-93	15.7	251
120	Expansion and maintenance of human embryonic stem cell-derived endothelial cells by TGFbeta inhibition is Id1 dependent. <i>Nature Biotechnology</i> , 2010 , 28, 161-6	44.5	242
119	Bone marrow cells in the 'pre-metastatic niche': within bone and beyond. <i>Cancer and Metastasis Reviews</i> , 2006 , 25, 521-9	9.6	237
118	Divergent clonal selection dominates medulloblastoma at recurrence. <i>Nature</i> , 2016 , 529, 351-7	50.4	206

117	The evolution of the cancer niche during multistage carcinogenesis. <i>Nature Reviews Cancer</i> , 2013 , 13, 511-8	31.3	195
116	The Id proteins and angiogenesis. <i>Oncogene</i> , 2001 , 20, 8334-41	9.2	189
115	Prognostic value of medulloblastoma extent of resection after accounting for molecular subgroup: a retrospective integrated clinical and molecular analysis. <i>Lancet Oncology, The</i> , 2016 , 17, 484-495	21.7	187
114	Asymmetric-flow field-flow fractionation technology for exomere and small extracellular vesicle separation and characterization. <i>Nature Protocols</i> , 2019 , 14, 1027-1053	18.8	153
113	Tumour exosomal CEMIP protein promotes cancer cell colonization in brain metastasis. <i>Nature Cell Biology</i> , 2019 , 21, 1403-1412	23.4	131
112	Contribution of marrow-derived progenitors to vascular and cardiac regeneration. <i>Seminars in Cell and Developmental Biology</i> , 2002 , 13, 61-7	7.5	121
111	Self-renewal of CD133(hi) cells by IL6/Notch3 signalling regulates endocrine resistance in metastatic breast cancer. <i>Nature Communications</i> , 2016 , 7, 10442	17.4	114
110	Macromolecular crowding meets tissue engineering by self-assembly: a paradigm shift in regenerative medicine. <i>Advanced Materials</i> , 2014 , 26, 3024-34	24	114
109	Variant ribosomal RNA alleles are conserved and exhibit tissue-specific expression. <i>Science Advances</i> , 2018 , 4, eaao0665	14.3	105
108	STAT3 negatively regulates thyroid tumorigenesis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, E2361-70	11.5	99
107	Evolution of Cancer Stem-like Cells in Endocrine-Resistant Metastatic Breast Cancers Is Mediated by Stromal Microvesicles. <i>Cancer Research</i> , 2017 , 77, 1927-1941	10.1	83
106	Activation of Hematopoietic Stem/Progenitor Cells Promotes Immunosuppression Within the Pre-metastatic Niche. <i>Cancer Research</i> , 2016 , 76, 1335-47	10.1	83
105	Patterns of failure using a conformal radiation therapy tumor bed boost for medulloblastoma. Journal of Clinical Oncology, 2003 , 21, 3079-83	2.2	82
104	Neoangiogenesis contributes to the development of hemophilic synovitis. <i>Blood</i> , 2011 , 117, 2484-93	2.2	80
103	A catalytic role for proangiogenic marrow-derived cells in tumor neovascularization. <i>Cancer Cell</i> , 2008 , 13, 181-3	24.3	73
102	Roadblocks to translational advances on metastasis research. <i>Nature Medicine</i> , 2013 , 19, 1104-9	50.5	60
101	Ribosome biogenesis during cell cycle arrest fuels EMT in development and disease. <i>Nature Communications</i> , 2019 , 10, 2110	17.4	59
100	Medulloblastoma subgroups remain stable across primary and metastatic compartments. <i>Acta Neuropathologica</i> , 2015 , 129, 449-57	14.3	58

(2019-2015)

99	Id1 suppresses anti-tumour immune responses and promotes tumour progression by impairing myeloid cell maturation. <i>Nature Communications</i> , 2015 , 6, 6840	17.4	56
98	Regulation of vasculogenesis by platelet-mediated recruitment of bone marrow-derived cells. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2008 , 28, 217-22	9.4	56
97	Stat3 mediates expression of autotaxin in breast cancer. <i>PLoS ONE</i> , 2011 , 6, e27851	3.7	56
96	Cancer. A few to flip the angiogenic switch. <i>Science</i> , 2008 , 319, 163-4	33.3	52
95	A phase II trial of carboplatin for intraocular retinoblastoma. <i>Pediatric Blood and Cancer</i> , 2007 , 49, 643-8	3 3	43
94	JAK2 inhibition sensitizes resistant EGFR-mutant lung adenocarcinoma to tyrosine kinase inhibitors. <i>Science Signaling</i> , 2016 , 9, ra33	8.8	41
93	Inflammation joins the "niche". Cancer Cell, 2008, 14, 347-9	24.3	39
92	Extracellular matrix proteins and carcinoembryonic antigen-related cell adhesion molecules characterize pancreatic duct fluid exosomes in patients with pancreatic Lancer. <i>Hpb</i> , 2018 , 20, 597-604	3.8	36
91	The Effect of Cage Shape on Nanoparticle-Based Drug Carriers: Anticancer Drug Release and Efficacy via Receptor Blockade Using Dextran-Coated Iron Oxide Nanocages. <i>Nano Letters</i> , 2016 , 16, 7357-7363	11.5	35
90	Unshielding Exosomal RNA Unleashes Tumor Growth And Metastasis. <i>Cell</i> , 2017 , 170, 223-225	56.2	27
89	Id1 represses osteoclast-dependent transcription and affects bone formation and hematopoiesis. <i>PLoS ONE</i> , 2009 , 4, e7955	3.7	27
88	A phase II study of radioimmunotherapy with intraventricular I-3F8 for medulloblastoma. <i>Pediatric Blood and Cancer</i> , 2018 , 65, e26754	3	26
87	Resisting arrest: a switch from angiogenesis to vasculogenesis in recurrent malignant gliomas. Journal of Clinical Investigation, 2010 , 120, 663-7	15.9	25
86	A proangiogenic signaling axis in myeloid cells promotes malignant progression of glioma. <i>Journal of Clinical Investigation</i> , 2017 , 127, 1826-1838	15.9	22
85	p130Rb2 and p27kip1 cooperate to control mobilization of angiogenic progenitors from the bone marrow. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 689	0-5.5	16
84	A Genomic-Pathologic Annotated Risk Model to Predict Recurrence in Early-Stage Lung Adenocarcinoma. <i>JAMA Surgery</i> , 2021 , 156, e205601	5.4	16
83	Temozolomide in secondary prevention of HER2-positive breast cancer brain metastases. <i>Future Oncology</i> , 2020 , 16, 899-909	3.6	13
82	Non-reversible tissue fixation retains extracellular vesicles for in situ imaging. <i>Nature Methods</i> , 2019 , 16, 1269-1273	21.6	13

81	Cancer-Associated Fibroblasts Promote Aggressive Gastric Cancer Phenotypes via Heat Shock Factor 1-Mediated Secretion of Extracellular Vesicles. <i>Cancer Research</i> , 2021 , 81, 1639-1653	10.1	13
80	Extracellular vesicle- and particle-mediated communication shapes innate and adaptive immune responses. <i>Journal of Experimental Medicine</i> , 2021 , 218,	16.6	12
79	Tumor Lymphatic Function Regulates Tumor Inflammatory and Immunosuppressive Microenvironments. <i>Cancer Immunology Research</i> , 2019 , 7, 1345-1358	12.5	11
78	Pre-Metastatic Niche Formation Has Taken Its TOLL. <i>Cancer Cell</i> , 2016 , 30, 189-191	24.3	10
77	An exosome pathway without an ESCRT. Cell Research, 2021, 31, 105-106	24.7	10
76	Mutation Is Associated with Increased Risk of Recurrence in Surgically Resected Lung Adenocarcinoma. <i>Clinical Cancer Research</i> , 2021 , 27, 2604-2612	12.9	9
75	Complex polymorphisms in endocytosis genes suggest alpha-cyclodextrin as a treatment for breast cancer. <i>PLoS ONE</i> , 2018 , 13, e0199012	3.7	9
74	Molecular diagnostics in paediatric glial tumours. <i>Lancet Oncology, The</i> , 2013 , 14, e19-27	21.7	8
73	Primary leptomeningeal primitive neuroectodermal tumor. <i>Journal of Neuro-Oncology</i> , 2003 , 63, 299-30	03 4.8	8
72	Melanoma-derived small extracellular vesicles induce lymphangiogenesis and metastasis through an NGFR-dependent mechanism <i>Nature Cancer</i> , 2021 , 2, 1387-1405	15.4	7
71	A TeNaCious foundation for the metastatic niche. Cancer Cell, 2011, 20, 139-41	24.3	6
70	Astrocytic laminin-211 drives disseminated breast tumor cell dormancy in brain <i>Nature Cancer</i> , 2022 , 3, 25-42	15.4	6
69	Calcium signaling induces a partial EMT. EMBO Reports, 2021, 22, e51872	6.5	6
68	Tumour vesicular micromachinery uncovered. <i>Nature Cell Biology</i> , 2019 , 21, 795-797	23.4	5
67	Chapter 11. The role of bone marrow-derived cells in tumor angiogenesis and metastatic progression. <i>Methods in Enzymology</i> , 2008 , 444, 255-69	1.7	5
66	A protocol for Asymmetric-Flow Field-Flow Fractionation (AF4) of small extracellular vesicles. <i>Protocol Exchange</i> ,		4
65	The PI3K/mTOR inhibitor Gedatolisib eliminates dormant breast cancer cells in organotypic culture, but fails to prevent metastasis in preclinical settings. <i>Molecular Oncology</i> , 2021 ,	7.9	4
64	Bone voyage-Osteoblasts remotely control tumors. <i>Science</i> , 2017 , 358, 1127-1128	33.3	3

63	Engineered niches model the onset of metastasis. Nature Biomedical Engineering, 2018, 2, 885-887	19	3
62	Lung Cancer Metastasis369-381		2
61	Growth Regulatory Pathways Contributing to Organ Selectivity of Metastasis204-214		2
60	Discovery and Development of Drugs Targeting Tumor Invasion and Metastasis600-611		2
59	Kaplan et al. reply. <i>Nature</i> , 2009 , 461, E5-E5	50.4	2
58	Error-free, automated data integration of exosome cargo protein data with extensive clinical data in an ongoing, multi-omic translational research study <i>Journal of Clinical Oncology</i> , 2020 , 38, e16743-e	16 7 43	2
57	Extracellular vesicle and particle isolation from human and murine cell lines, tissues, and bodily fluids. <i>STAR Protocols</i> , 2021 , 2, 100225	1.4	2
56	Tumour-regulated anorexia preceding cachexia. <i>Nature Cell Biology</i> , 2021 , 23, 111-113	23.4	2
55	The Role of Radiotherapy in the Treatment of Metastatic Disease612-621		1
54	Metastasis-Promoting Genes55-63		1
54	Metastasis-Promoting Genes55-63 Function and Expression of the uPA/uPAR System in Cancer Metastasis223-236		1
53	Function and Expression of the uPA/uPAR System in Cancer Metastasis223-236 Metronomic Chemotherapy for Treatment of Metastatic Disease: From Preclinical Research to		1
53 52	Function and Expression of the uPA/uPAR System in Cancer Metastasis223-236 Metronomic Chemotherapy for Treatment of Metastatic Disease: From Preclinical Research to Clinical Trials573-586	24.3	1 0
53 52 51	Function and Expression of the uPA/uPAR System in Cancer Metastasis223-236 Metronomic Chemotherapy for Treatment of Metastatic Disease: From Preclinical Research to Clinical Trials573-586 Germline Variation and Other Host Determinants of Metastatic Potential96-104	24.3	1 0
53 52 51 50	Function and Expression of the uPA/uPAR System in Cancer Metastasis223-236 Metronomic Chemotherapy for Treatment of Metastatic Disease: From Preclinical Research to Clinical Trials573-586 Germline Variation and Other Host Determinants of Metastatic Potential96-104 Tumor Extracellular Vesicles Impede Interferon Alert Responses. Cancer Cell, 2019, 35, 3-5 A Freeze Drying Sample Preparation Method for Correlative Light and Scanning/Transmission		1 0
53 52 51 50 49	Function and Expression of the uPA/uPAR System in Cancer Metastasis223-236 Metronomic Chemotherapy for Treatment of Metastatic Disease: From Preclinical Research to Clinical Trials573-586 Germline Variation and Other Host Determinants of Metastatic Potential96-104 Tumor Extracellular Vesicles Impede Interferon Alert Responses. Cancer Cell, 2019, 35, 3-5 A Freeze Drying Sample Preparation Method for Correlative Light and Scanning/Transmission Electron Microscopy. Microscopy and Microanalysis, 2017, 23, 1368-1369		1 1 0

45	The Influence of Aging and Cellular Senescence on Metastasis105-116
44	Metastasis of Primary Liver Cancer344-355
43	Critical Issues of Research on Circulating and Disseminated Tumor Cells in Cancer Patients486-500
42	Preserving Bone Health in Malignancy and Complications of Bone Metastases538-551
41	Role of Platelets and Thrombin in Metastasis552-562
40	The Role of Metastasis Suppressor Genes in Metastasis64-76
39	Apoptosis, Anoikis, and Senescence131-147
38	Gynecologic Malignancies440-455
37	The Biology and Treatment of Metastatic Testicular Cancer465-474
36	Introduction to Basic Research1-4
35	Animal Models of Cancer Metastasis5-14
34	Computational Models25-39
33	Intravital Microscopy to Visualize Invasion and Metastasis40-54
32	Stromal-Derived Factors That Dictate Organ-Specific Metastasis77-84
31	The Continuum of Epithelial Mesenchymal Transition Implication of Hybrid States for Migration and Survival in Development and Cancer117-130
30	Metastatic Inefficiency and Tumor Dormancy148-154
29	Role of Inflammation in Metastatic Progression155-166
28	Proteolytic Cascades in Invasion and Metastasis167-182

Cell-Derived Microvesicles and Metastasis191-198 27 26 Exploring the Earliest Steps in Metastasis: The Pre-metastatic Niche199-203 Determinants of Organ-Specific Metastasis215-222 25 The Lymphatics: On the Route to Cancer Metastasis237-254 24 Introduction to Clinical Research255-255 23 Sarcoma256-263 22 21 Head and Neck Cancer Metastasis294-312 Cutaneous Melanoma: Therapeutic Approaches for Metastatic Disease313-324 20 Gastric Cancer Metastasis325-332 19 18 Metastatic Pancreatic Cancer 333-343 Advances in Management of Metastatic Colorectal Cancer 356-368 17 Metastatic Thyroid Cancer: Evaluation and Treatment382-386 16 Metastatic Renal Cell Carcinoma387-394 15 Bone Complications of Myeloma and Lymphoma417-424 14 Breast Metastasis425-439 13 12 Prostate Cancer Metastasis: Thoughts on Biology and Therapeutics 456-464 Applications of Proteomics to Metastasis Diagnosis and Individualized Therapy475-485 11 Lymphatic Mapping and Sentinel Lymph Node Biopsy501-515 10

10.1

			MAIL - 1 - 1 - 1 - EAC FOR
9	Molecular	imaging and	Metastasis 516-537

8	Cancer Nanotechnology Offers Great Promise for Cancer Research and Therapy563-572	
7	Prospects for Clinical Trials of Metastasis Inhibitors622-626	
6	Primary Brain Tumors and Cerebral Metastases282-293	
5	Newly Discovered Polymorphism in the CD34+ Stem Cell Specific AC133-P1 Promoter Linked to Leukemias <i>Blood</i> , 2004 , 104, 2002-2002	2.2
4	Phase I/II study of T-DM1 alone versus T-DM1 and metronomic temozolomide in secondary prevention of HER2-positive breast cancer brain metastases following stereotactic radiosurgery <i>Journal of Clinical Oncology</i> , 2020 , 38, TPS2572-TPS2572	2.2
3	Interactions Between Megakaryocytes and Tumour Cells at the Bone Marrow Vascular Stem Cell Niche Promote Tumour Growth and Metastasis <i>Blood</i> , 2009 , 114, 470-470	2.2
2	Zena Werb, Ph.D, Queen of the Matrix[IIn Memoriam (1945[020). Cancer Research, 2020, 80, 3773-3774	10.1
	Abstract PS-05-02: Extracellular vesicles from obese human breast adinose tissue promote breast	

cancer cell proliferation by increasing mitochondrial mass and stimulating mitochondrial

respiration. Cancer Research, 2022, 82, P5-05-02-P5-05-02