David Lyden

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7273170/publications.pdf

Version: 2024-02-01

156 papers 40,758 citations

23500 58 h-index 97 g-index

164 all docs

164 docs citations

164 times ranked 43414 citing authors

#	Article	IF	CITATIONS
1	Tumour exosome integrins determine organotropic metastasis. Nature, 2015, 527, 329-335.	13.7	3,688
2	Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nature Medicine, 2012, 18, 883-891.	15.2	3,098
3	VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 2005, 438, 820-827.	13.7	2,841
4	Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nature Cell Biology, 2015, 17, 816-826.	4.6	2,064
5	Impaired recruitment of bone-marrow–derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nature Medicine, 2001, 7, 1194-1201.	15.2	1,784
6	Recruitment of Stem and Progenitor Cells from the Bone Marrow Niche Requires MMP-9 Mediated Release of Kit-Ligand. Cell, 2002, 109, 625-637.	13.5	1,630
7	Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nature Medicine, 2003, 9, 702-712.	15.2	1,529
8	Tumor Response to Radiotherapy Regulated by Endothelial Cell Apoptosis. Science, 2003, 300, 1155-1159.	6.0	1,474
9	Extracellular Vesicles in Cancer: Cell-to-Cell Mediators of Metastasis. Cancer Cell, 2016, 30, 836-848.	7.7	1,401
10	Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Research, 2014, 24, 766-769.	5.7	1,282
11	Pre-metastatic niches: organ-specific homes for metastases. Nature Reviews Cancer, 2017, 17, 302-317.	12.8	1,272
12	Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nature Cell Biology, 2018, 20, 332-343.	4.6	1,101
13	The metastatic niche: adapting the foreign soil. Nature Reviews Cancer, 2009, 9, 285-293.	12.8	1,081
14	The perivascular niche regulates breast tumour dormancy. Nature Cell Biology, 2013, 15, 807-817.	4.6	945
15	ld1 and ld3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. Nature, 1999, 401, 670-677.	13.7	861
16	Exosome-Mediated Metastasis: Communication from a Distance. Developmental Cell, 2019, 49, 347-360.	3.1	802
17	CD133 expression is not restricted to stem cells, and both CD133+ and CD133– metastatic colon cancer cells initiate tumors. Journal of Clinical Investigation, 2008, 118, 2111-20.	3.9	736
18	Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nature Medicine, 2004, 10, 64-71.	15,2	697

#	Article	IF	CITATIONS
19	Extracellular Vesicle and Particle Biomarkers Define Multiple Human Cancers. Cell, 2020, 182, 1044-1061.e18.	13.5	691
20	Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature, 2010, 468, 310-315.	13.7	686
21	Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy?. Nature Reviews Cancer, 2002, 2, 826-835.	12.8	670
22	Vascular Endothelial Growth Factor and Angiopoietin-1 Stimulate Postnatal Hematopoiesis by Recruitment of Vasculogenic and Hematopoietic Stem Cells. Journal of Experimental Medicine, 2001, 193, 1005-1014.	4.2	646
23	Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes. Nature Medicine, 2006, 12, 557-567.	15.2	616
24	Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1+ stem cells from bone-marrow microenvironment. Nature Medicine, 2002, 8, 841-849.	15.2	602
25	Preparing the "Soil†The Premetastatic Niche: Figure 1 Cancer Research, 2006, 66, 11089-11093.	0.4	582
26	The secreted factors responsible for pre-metastatic niche formation: Old sayings and new thoughts. Seminars in Cancer Biology, 2011, 21, 139-146.	4.3	550
27	A Human Pluripotent Stem Cell-based Platform to Study SARS-CoV-2 Tropism and Model Virus Infection in Human Cells and Organoids. Cell Stem Cell, 2020, 27, 125-136.e7.	5.2	543
28	Packaging and transfer of mitochondrial DNA via exosomes regulate escape from dormancy in hormonal therapy-resistant breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9066-E9075.	3.3	502
29	The IL-6/JAK/Stat3 Feed-Forward Loop Drives Tumorigenesis and Metastasis. Neoplasia, 2013, 15, 848-IN45.	2.3	396
30	Migratory neighbors and distant invaders: tumor-associated niche cells. Genes and Development, 2008, 22, 559-574.	2.7	350
31	AC133/CD133/Prominin-1. International Journal of Biochemistry and Cell Biology, 2005, 37, 715-719.	1.2	336
32	Young Adult Bone Marrow–Derived Endothelial Precursor Cells Restore Aging-Impaired Cardiac Angiogenic Function. Circulation Research, 2002, 90, E89-93.	2.0	290
33	Bone marrow cells in the â€~pre-metastatic niche': within bone and beyond. Cancer and Metastasis Reviews, 2007, 25, 521-529.	2.7	282
34	Expansion and maintenance of human embryonic stem cell–derived endothelial cells by TGFβ inhibition is ld1 dependent. Nature Biotechnology, 2010, 28, 161-166.	9.4	282
35	Prognostic value of medulloblastoma extent of resection after accounting for molecular subgroup: a retrospective integrated clinical and molecular analysis. Lancet Oncology, The, 2016, 17, 484-495.	5.1	274
36	Asymmetric-flow field-flow fractionation technology for exomere and small extracellular vesicle separation and characterization. Nature Protocols, 2019, 14, 1027-1053.	5.5	274

#	Article	IF	CITATIONS
37	Divergent clonal selection dominates medulloblastoma at recurrence. Nature, 2016, 529, 351-357.	13.7	266
38	Tumour exosomal CEMIP protein promotes cancer cell colonization in brain metastasis. Nature Cell Biology, 2019, 21, 1403-1412.	4.6	254
39	The evolution of the cancer niche during multistage carcinogenesis. Nature Reviews Cancer, 2013, 13, 511-518.	12.8	235
40	The Id proteins and angiogenesis. Oncogene, 2001, 20, 8334-8341.	2.6	209
41	Variant ribosomal RNA alleles are conserved and exhibit tissue-specific expression. Science Advances, 2018, 4, eaao0665.	4.7	162
42	Macromolecular Crowding Meets Tissue Engineering by Selfâ€Assembly: A Paradigm Shift in Regenerative Medicine. Advanced Materials, 2014, 26, 3024-3034.	11.1	147
43	Self-renewal of CD133hi cells by IL6/Notch3 signalling regulates endocrine resistance in metastatic breast cancer. Nature Communications, 2016, 7, 10442.	5.8	144
44	Ribosome biogenesis during cell cycle arrest fuels EMT in development and disease. Nature Communications, 2019, 10, 2110.	5.8	139
45	Contribution of marrow-derived progenitors to vascular and cardiac regeneration. Seminars in Cell and Developmental Biology, 2002, 13, 61-67.	2.3	135
46	Activation of Hematopoietic Stem/Progenitor Cells Promotes Immunosuppression Within the Pre–metastatic Niche. Cancer Research, 2016, 76, 1335-1347.	0.4	112
47	Evolution of Cancer Stem-like Cells in Endocrine-Resistant Metastatic Breast Cancers Is Mediated by Stromal Microvesicles. Cancer Research, 2017, 77, 1927-1941.	0.4	112
48	STAT3 negatively regulates thyroid tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2361-70.	3.3	110
49	Neoangiogenesis contributes to the development of hemophilic synovitis. Blood, 2011, 117, 2484-2493.	0.6	102
50	Patterns of Failure Using a Conformal Radiation Therapy Tumor Bed Boost for Medulloblastoma. Journal of Clinical Oncology, 2003, 21, 3079-3083.	0.8	97
51	Roadblocks to translational advances on metastasis research. Nature Medicine, 2013, 19, 1104-1109.	15.2	91
52	ld1 suppresses anti-tumour immune responses and promotes tumour progression by impairing myeloid cell maturation. Nature Communications, 2015, 6, 6840.	5.8	87
53	Melanoma-derived small extracellular vesicles induce lymphangiogenesis and metastasis through an NGFR-dependent mechanism. Nature Cancer, 2021, 2, 1387-1405.	5.7	83
54	S100 chemokines mediate bookmarking of premetastatic niches. Nature Cell Biology, 2006, 8, 1321-1323.	4.6	81

#	Article	IF	Citations
55	A Catalytic Role for Proangiogenic Marrow-Derived Cells in Tumor Neovascularization. Cancer Cell, 2008, 13, 181-183.	7.7	81
56	Medulloblastoma subgroups remain stable across primary and metastatic compartments. Acta Neuropathologica, 2015, 129, 449-457.	3.9	80
57	Stat3 Mediates Expression of Autotaxin in Breast Cancer. PLoS ONE, 2011, 6, e27851.	1.1	64
58	Regulation of Vasculogenesis by Platelet-Mediated Recruitment of Bone Marrow–Derived Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 217-222.	1.1	63
59	A Few to Flip the Angiogenic Switch. Science, 2008, 319, 163-164.	6.0	62
60	JAK2 inhibition sensitizes resistant EGFR-mutant lung adenocarcinoma to tyrosine kinase inhibitors. Science Signaling, 2016, 9, ra33.	1.6	54
61	A phase II trial of carboplatin for intraocular retinoblastoma. Pediatric Blood and Cancer, 2007, 49, 643-648.	0.8	52
62	Extracellular matrix proteins and carcinoembryonic antigen-related cell adhesion molecules characterize pancreatic duct fluid exosomes in patients with pancreatic Acancer. Hpb, 2018, 20, 597-604.	0.1	52
63	A Genomic-Pathologic Annotated Risk Model to Predict Recurrence in Early-Stage Lung Adenocarcinoma. JAMA Surgery, 2021, 156, e205601.	2.2	52
64	Astrocytic laminin-211 drives disseminated breast tumor cell dormancy in brain. Nature Cancer, 2022, 3, 25-42.	5.7	52
65	The Effect of Cage Shape on Nanoparticle-Based Drug Carriers: Anticancer Drug Release and Efficacy via Receptor Blockade Using Dextran-Coated Iron Oxide Nanocages. Nano Letters, 2016, 16, 7357-7363.	4.5	51
66	Cancer-Associated Fibroblasts Promote Aggressive Gastric Cancer Phenotypes via Heat Shock Factor 1â€"Mediated Secretion of Extracellular Vesicles. Cancer Research, 2021, 81, 1639-1653.	0.4	50
67	Inflammation Joins the "Niche― Cancer Cell, 2008, 14, 347-349.	7.7	47
68	Extracellular vesicle– and particle-mediated communication shapes innate and adaptive immune responses. Journal of Experimental Medicine, 2021, 218, .	4.2	47
69	A phase II study of radioimmunotherapy with intraventricular ¹³¹ lâ€3F8 for medulloblastoma. Pediatric Blood and Cancer, 2018, 65, e26754.	0.8	46
70	An exosome pathway without an ESCRT. Cell Research, 2021, 31, 105-106.	5.7	42
71	Unshielding Exosomal RNA Unleashes Tumor Growth And Metastasis. Cell, 2017, 170, 223-225.	13.5	40
72	A proangiogenic signaling axis in myeloid cells promotes malignant progression of glioma. Journal of Clinical Investigation, 2017, 127, 1826-1838.	3.9	34

#	Article	IF	CITATIONS
73	Calcium signaling induces a partial EMT. EMBO Reports, 2021, 22, e51872.	2.0	33
74	Resisting arrest: a switch from angiogenesis to vasculogenesis in recurrent malignant gliomas. Journal of Clinical Investigation, 2010, 120, 663-667.	3.9	32
75	Tumor Lymphatic Function Regulates Tumor Inflammatory and Immunosuppressive Microenvironments. Cancer Immunology Research, 2019, 7, 1345-1358.	1.6	31
76	ld1 Represses Osteoclast-Dependent Transcription and Affects Bone Formation and Hematopoiesis. PLoS ONE, 2009, 4, e7955.	1.1	29
77	Temozolomide in secondary prevention of HER2-positive breast cancer brain metastases. Future Oncology, 2020, 16, 899-909.	1.1	22
78	<i>KRAS</i> G12C Mutation Is Associated with Increased Risk of Recurrence in Surgically Resected Lung Adenocarcinoma. Clinical Cancer Research, 2021, 27, 2604-2612.	3.2	20
79	p130Rb2 and p27kip1 cooperate to control mobilization of angiogenic progenitors from the bone marrow. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 6890-6895.	3.3	19
80	The PI3K/mTOR inhibitor Gedatolisib eliminates dormant breast cancer cells in organotypic culture, but fails to prevent metastasis in preclinical settings. Molecular Oncology, 2022, 16, 130-147.	2.1	19
81	Non-reversible tissue fixation retains extracellular vesicles for in situ imaging. Nature Methods, 2019, 16, 1269-1273.	9.0	18
82	Complex polymorphisms in endocytosis genes suggest alpha-cyclodextrin as a treatment for breast cancer. PLoS ONE, 2018, 13, e0199012.	1.1	17
83	Lymphatic detours for cancer. Nature, 2017, 546, 609-610.	13.7	16
84	Extracellular vesicle and particle isolation from human and murine cell lines, tissues, and bodily fluids. STAR Protocols, 2021, 2, 100225.	0.5	15
85	Primary leptomeningeal primitive neuroectodermal tumor. Journal of Neuro-Oncology, 2003, 63, 299-303.	1.4	11
86	Pre-Metastatic Niche Formation Has Taken Its TOLL. Cancer Cell, 2016, 30, 189-191.	7.7	11
87	Tumor Extracellular Vesicles Impede Interferon Alert Responses. Cancer Cell, 2019, 35, 3-5.	7.7	11
88	Molecular diagnostics in paediatric glial tumours. Lancet Oncology, The, 2013, 14, e19-e27.	5.1	8
89	A TeNaCious Foundation for the Metastatic Niche. Cancer Cell, 2011, 20, 139-141.	7.7	6
90	Chapter 11 The Role of Bone Marrow–Derived Cells in Tumor Angiogenesis and Metastatic Progression. Methods in Enzymology, 2008, 444, 255-269.	0.4	5

#	Article	IF	CITATIONS
91	Bone voyageâ€"Osteoblasts remotely control tumors. Science, 2017, 358, 1127-1128.	6.0	5
92	Tumour vesicular micromachinery uncovered. Nature Cell Biology, 2019, 21, 795-797.	4.6	5
93	A protocol for Asymmetric-Flow Field-Flow Fractionation (AF4) of small extracellular vesicles. Protocol Exchange, 0, , .	0.3	5
94	Tumour-regulated anorexia preceding cachexia. Nature Cell Biology, 2021, 23, 111-113.	4.6	4
95	Engineered niches model the onset of metastasis. Nature Biomedical Engineering, 2018, 2, 885-887.	11.6	3
96	Kaplan et al. reply. Nature, 2009, 461, E5-E5.	13.7	2
97	Lung Cancer Metastasis. , 0, , 369-381.		2
98	Growth Regulatory Pathways Contributing to Organ Selectivity of Metastasis., 0,, 204-214.		2
99	Metronomic Chemotherapy for Treatment of Metastatic Disease: From Preclinical Research to Clinical Trials., 0,, 573-586.		2
100	Discovery and Development of Drugs Targeting Tumor Invasion and Metastasis., 0,, 600-611.		2
101	Error-free, automated data integration of exosome cargo protein data with extensive clinical data in an ongoing, multi-omic translational research study Journal of Clinical Oncology, 2020, 38, e16743-e16743.	0.8	2
102	The Role of Radiotherapy in the Treatment of Metastatic Disease., 0,, 612-621.		1
103	Germline Variation and Other Host Determinants of Metastatic Potential., 0,, 96-104.		1
104	The Influence of Aging and Cellular Senescence on Metastasis. , 0, , 105-116.		1
105	Metastasis-Promoting Genes., 0,, 55-63.		1
106	The Continuum of Epithelial Mesenchymal Transition – Implication of Hybrid States for Migration and Survival in Development and Cancer. , 0, , 117-130.		1
107	Function and Expression of the uPA/uPAR System in Cancer Metastasis. , 0, , 223-236.		1
108	Primary Brain Tumors and Cerebral Metastases. , 2011, , 282-293.		1

#	Article	IF	Citations
109	Targeting the IL-6/Jak Pathway in Breast Cancer. Breast, 2011, 20, S14.	0.9	1
110	Role of Matrix Metalloproteinases in Tumor Invasion and Metastasis. , 0, , 183-190.		0
111	Drosophila and Zebrafish: Genetic Models for Cancer Metastasis. , 0, , 15-24.		0
112	Metastasis Genes: Epigenetics. , 0, , 85-95.		0
113	Metastasis of Primary Liver Cancer. , 0, , 344-355.		0
114	Critical Issues of Research on Circulating and Disseminated Tumor Cells in Cancer Patients. , 0, , 486-500.		0
115	Preserving Bone Health in Malignancy and Complications of Bone Metastases. , 0, , 538-551.		0
116	Role of Platelets and Thrombin in Metastasis. , 0, , 552-562.		0
117	The Role of Metastasis Suppressor Genes in Metastasis. , 0, , 64-76.		0
118	Apoptosis, Anoikis, and Senescence., 0,, 131-147.		0
119	Gynecologic Malignancies. , 0, , 440-455.		0
120	The Biology and Treatment of Metastatic Testicular Cancer. , 0, , 465-474.		0
121	Overview: Biology Is the Foundation of Therapy. , 0, , xvii-xviii.		0
122	Introduction to Basic Research. , 0, , 1-4.		0
123	Animal Models of Cancer Metastasis. , 0, , 5-14.		0
124	Computational Models., 0,, 25-39.		0
125	Intravital Microscopy to Visualize Invasion and Metastasis. , 0, , 40-54.		0
126	Stromal-Derived Factors That Dictate Organ-Specific Metastasis. , 0, , 77-84.		0

#	Article	IF	CITATIONS
127	Metastatic Inefficiency and Tumor Dormancy. , 0, , 148-154.		O
128	Role of Inflammation in Metastatic Progression. , 0, , 155-166.		0
129	Proteolytic Cascades in Invasion and Metastasis. , 0, , 167-182.		0
130	Cell-Derived Microvesicles and Metastasis., 0,, 191-198.		0
131	Exploring the Earliest Steps in Metastasis: The Pre-metastatic Niche. , 0, , 199-203.		O
132	Determinants of Organ-Specific Metastasis. , 0, , 215-222.		0
133	The Lymphatics: On the Route to Cancer Metastasis. , 0, , 237-254.		0
134	Introduction to Clinical Research. , 0, , 255-255.		0
135	Sarcoma., 0,, 256-263.		0
136	Head and Neck Cancer Metastasis., 0,, 294-312.		0
137	Cutaneous Melanoma: Therapeutic Approaches for Metastatic Disease. , 0, , 313-324.		0
138	Gastric Cancer Metastasis., 0,, 325-332.		0
139	Metastatic Pancreatic Cancer., 0,, 333-343.		0
140	Advances in Management of Metastatic Colorectal Cancer., 0,, 356-368.		0
141	Metastatic Thyroid Cancer: Evaluation and Treatment. , 0, , 382-386.		0
142	Metastatic Renal Cell Carcinoma. , 0, , 387-394.		0
143	Bone Complications of Myeloma and Lymphoma. , 0, , 417-424.		0
144	Breast Metastasis. , 0, , 425-439.		0

#	Article	IF	CITATIONS
145	Prostate Cancer Metastasis: Thoughts on Biology and Therapeutics. , 0, , 456-464.		O
146	Applications of Proteomics to Metastasis Diagnosis and Individualized Therapy., 0,, 475-485.		O
147	Lymphatic Mapping and Sentinel Lymph Node Biopsy. , 0, , 501-515.		O
148	Molecular Imaging and Metastasis. , 0, , 516-537.		0
149	Cancer Nanotechnology Offers Great Promise for Cancer Research and Therapy. , 0, , 563-572.		O
150	Prospects for Clinical Trials of Metastasis Inhibitors. , 0, , 622-626.		O
151	A Freeze Drying Sample Preparation Method for Correlative Light and Scanning/Transmission Electron Microscopy. Microscopy and Microanalysis, 2017, 23, 1368-1369.	0.2	O
152	Zena Werb, Ph.D, "Queen of the Matrix― In Memoriam (1945–2020). Cancer Research, 2020, 80, 3773-37	7 76 1.4	0
153	Newly Discovered Polymorphism in the CD34+ Stem Cell Specific AC133-P1 Promoter Linked to Leukemias Blood, 2004, 104, 2002-2002.	0.6	O
154	Interactions Between Megakaryocytes and Tumour Cells at the Bone Marrow Vascular Stem Cell Niche Promote Tumour Growth and Metastasis Blood, 2009, 114, 470-470.	0.6	0
155	Phase I/II study of T-DM1 alone versus T-DM1 and metronomic temozolomide in secondary prevention of HER2-positive breast cancer brain metastases following stereotactic radiosurgery Journal of Clinical Oncology, 2020, 38, TPS2572-TPS2572.	0.8	O
156	Abstract P5-05-02: Extracellular vesicles from obese human breast adipose tissue promote breast cancer cell proliferation by increasing mitochondrial mass and stimulating mitochondrial respiration. Cancer Research, 2022, 82, P5-05-02-P5-05-02.	0.4	0