
Joel O Paz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7273149/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Examples of strategies to analyze spatial and temporal yield variability using crop models. European Journal of Agronomy, 2002, 18, 141-158.	4.1	234
2	AgClimate: A climate forecast information system for agricultural risk management in the southeastern USA. Computers and Electronics in Agriculture, 2006, 53, 13-27.	7.7	134
3	The Use of NARX Neural Networks to Forecast Daily Groundwater Levels. Water Resources Management, 2017, 31, 1591-1603.	3.9	120
4	Methodology for the use of DSSAT models for precision agriculture decision support. Computers and Electronics in Agriculture, 2008, 64, 276-285.	7.7	107
5	Forecast Skill and Farmers' Skills: Seasonal Climate Forecasts and Agricultural Risk Management in the Southeastern United States. Weather, Climate, and Society, 2010, 2, 44-59.	1.1	103
6	Model-based technique to determine variable rate nitrogen for corn. Agricultural Systems, 1999, 61, 69-75.	6.1	94
7	Support vector regression with reduced training sets for air temperature prediction: a comparison with artificial neural networks. Neural Computing and Applications, 2011, 20, 151-159.	5.6	77
8	Evaluation of Seasonally Classified Inputs for the Prediction of Daily Groundwater Levels: NARX Networks Vs Support Vector Machines. Environmental Modeling and Assessment, 2019, 24, 223-234.	2.2	60
9	Evaluating Management Zone Optimal Nitrogen Rates with a Crop Growth Model. Agronomy Journal, 2006, 98, 545-553.	1.8	57
10	Maize ethanol feedstock production and net energy value as affected by climate variability and crop management practices. Agricultural Systems, 2009, 100, 11-21.	6.1	56
11	Remote Sensing and Geospatial Technological Applications for Site-specific Management of Fruit and Nut Crops: A Review. Remote Sensing, 2010, 2, 1973-1997.	4.0	54
12	Tools for optimizing management of spatially-variable fields. Agricultural Systems, 2001, 70, 445-476.	6.1	49
13	Evaluation and analysis of temperature for historical (1996–2015) and projected (2030–2060) climates in Pakistan using SimCLIM climate model: Ensemble application. Atmospheric Research, 2018, 213, 422-436.	4.1	47
14	Development of an ENSO-based irrigation decision support tool for peanut production in the southeastern US. Computers and Electronics in Agriculture, 2007, 55, 28-35.	7.7	42
15	An integrated SVR and crop model to estimate the impacts of irrigation on daily groundwater levels. Agricultural Systems, 2018, 159, 248-259.	6.1	34
16	Seasonal water quality changes in on-farm water storage systems in a south-central U.S. agricultural watershed. Agricultural Water Management, 2017, 187, 131-139.	5.6	33
17	Cotton yields as influenced by ENSO at different planting dates and spatial aggregation levels. Agricultural Systems, 2012, 111, 45-52.	6.1	32
18	Estimating irrigation water use for maize in the Southeastern USA: A modeling approach. Agricultural Water Management, 2012, 107, 104-111.	5.6	32

Joel O Paz

#	Article	IF	CITATIONS
19	A web-based fuzzy expert system for frost warnings in horticultural crops. Environmental Modelling and Software, 2012, 35, 84-91.	4.5	29
20	Potential adaptation strategies for rainfed soybean production in the south-eastern USA under climate change based on the CSM-CROPGRO-Soybean model. Journal of Agricultural Science, 2015, 153, 798-824.	1.3	29
21	Distinguishing blueberry bushes from mixed vegetation land use using high resolution satellite imagery and geospatial techniques. Computers and Electronics in Agriculture, 2009, 67, 51-58.	7.7	28
22	A Predictive Model for Spotted Wilt Epidemics in Peanut Based on Local Weather Conditions and the Tomato spotted wilt virus Risk Index. Phytopathology, 2008, 98, 1066-1074.	2.2	25
23	Net energy value of maize ethanol as a response to different climate and soil conditions in the southeastern USA. Biomass and Bioenergy, 2009, 33, 1055-1064.	5.7	24
24	Forecasting Drought Using the Agricultural Reference Index for Drought (ARID): A Case Study. Weather and Forecasting, 2013, 28, 427-443.	1.4	23
25	Methodology to link production and environmental risks of precision nitrogen management strategies in corn. Agricultural Systems, 2006, 89, 272-298.	6.1	22
26	Evaluation of Various Methods for Estimating Global Solar Radiation in the Southeastern United States. Journal of Applied Meteorology and Climatology, 2012, 51, 972-985.	1.5	22
27	ENSEMBLE ARTIFICIAL NEURAL NETWORKS FOR PREDICTION OF DEW POINT TEMPERATURE. Applied Artificial Intelligence, 2008, 22, 523-542.	3.2	21
28	ENSO-based climate variability affects water use efficiency of rainfed cotton grown in the southeastern USA. Agriculture, Ecosystems and Environment, 2010, 139, 629-635.	5.3	21
29	WebGro: A Webâ€Based Soybean Management Decision Support System. Agronomy Journal, 2004, 96, 1771-1779.	1.8	19
30	Application of AnnAGNPS to model an agricultural watershed in East-Central Mississippi for the evaluation of an on-farm water storage (OFWS) system. Agricultural Water Management, 2017, 192, 103-114.	5.6	18
31	The ENSO effect on peanut yield as influenced by planting date and soil type. Agricultural Systems, 2013, 121, 1-8.	6.1	17
32	Simulating the production potential and net energy yield of maize-ethanol in the southeastern USA. European Journal of Agronomy, 2010, 32, 272-279.	4.1	16
33	Predicting favorable conditions for early leaf spot of peanut using output from the Weather Research and Forecasting (WRF) model. International Journal of Biometeorology, 2012, 56, 259-268.	3.0	14
34	A Model to Estimate Hydrological Processes and Water Budget in an Irrigation Farm Pond. Water Resources Management, 2017, 31, 2225-2241.	3.9	14
35	Evaluating the nutrient reduction and water supply benefits of an on-farm water storage (OFWS) system in East Mississippi. Agriculture, Ecosystems and Environment, 2018, 265, 476-487.	5.3	13
36	Soil and Variety Effects on the Energy and Carbon Balances of Switchgrass-Derived Ethanol. Journal of Sustainable Bioenergy Systems, 2012, 02, 65-74.	0.8	13

Joel O Paz

#	Article	IF	CITATIONS
37	El Niño-Southern Oscillation (ENSO): Impact on tomato spotted wilt intensity in peanut and the implication on yield. Crop Protection, 2010, 29, 448-453.	2.1	11
38	Reduction in greenhouse gas emissions due to the use of bio-ethanol from wheat grain and straw produced in the south-eastern USA. Journal of Agricultural Science, 2010, 148, 511-527.	1.3	10
39	The Weather Research and Forecasting (WRF) model: application in prediction of TSWVâ€vectors populations. Journal of Applied Entomology, 2011, 135, 81-90.	1.8	10
40	Impact of Early Spring Weather Factors on the Risk of Tomato Spotted Wilt in Peanut. Plant Disease, 2009, 93, 783-788.	1.4	8
41	Crop Modeling Applications in Agricultural Water Management. Transactions of the ASABE, 2017, 60, 1959-1964.	1.1	6
42	Assessment of Potential Capacity Increases at Combined Heat and Power Facilities Based on Available Corn Stover and Forest Logging Residues. Energies, 2013, 6, 4418-4428.	3.1	5
43	Using AnnAGNPS to Simulate Runoff, Nutrient, and Sediment Loads in an Agricultural Catchment with an On-Farm Water Storage System. Climate, 2020, 8, 133.	2.8	4
44	Use of a crop model and soil moisture sensors for estimating soil moisture and irrigation applications in a production soybean field. Irrigation Science, 2022, 40, 925-939.	2.8	3
45	Climate-Based Agricultural Risk Management Tools for Florida, Georgia and Alabama, USA. , 2007, , 273-278.		2
46	Impact of rainfall characteristics on the NO3 – N concentration in a tailwater recovery ditch. Agricultural Water Management, 2020, 233, 106079.	5.6	2
47	Crop Management Effects on the Energy and Carbon Balances of Maize Stover-Based Ethanol Production. Energies, 2015, 8, 278-303.	3.1	1
48	Modeling Phosphorus Loading to the Ross Barnett Reservoir Using SWAT in the Upper Pearl River Watershed in East-central Mississippi. , 2010, , .		0
49	Analyzing the Effect of Variations in Soil and Management Practices on the Sustainability of Corn Stover-Based Bioethanol Production in Mississippi. , 2011, , .		0
50	Soil and Variety Effects on Energy Use and Carbon Emissions Associated with Switchgrass-Based Ethanol Production in Mississippi. , 2012, , .		0
51	Analysis of aerial multispectral imagery to assess water quality parameters of Tibbee Creek, Clay County, Mississippi. , 2012, , .		0
52	Potential Capacities of Two Combined Heat and Power Plants Based on Available Corn Stover and Forest Logging Residue. , 2012, , .		0
53	On-Farm Water Storage Systems in Porter Bayou Watershed, Mississippi. , 2012, , .		0
54	Effects of Hydroclimate on In-ditch Water Quality: Case Study of Two Tailwater Recovery Ditches in Mississippi. , 2016, , .		0

#	ARTICLE	IF	CITATIONS
55	Water Quality Dynamics in Agricultural Ponds in Mississippi: <i>In situ</i> Measured Parameters. , 2016, , .		0
56	لال;الاله: «It;i>Characterizing Surface Water Use for Irrigation in the Mississippi Delta، , 2019, ,		0