Oleg Krol

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7273111/publications.pdf

Version: 2024-02-01

567281 752698 39 480 15 20 h-index citations g-index papers 56 56 56 131 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Experimental Research of the Tribological Properties of D-Gun Sprayed WC – Co Coatings. Lecture Notes in Mechanical Engineering, 2022, , 34-45.	0.4	О
2	Examination of Adhesion Strength of D-Gun Sprayed Coatings Based on Tungsten and Chromium Carbides. Lecture Notes in Mechanical Engineering, 2022, , 429-440.	0.4	0
3	Optimal Choice of Worm Gearing Design with Increased Wear Resistance for Machine's Rotary Table. Lecture Notes in Mechanical Engineering, 2022, , 3-12.	0.4	О
4	Modification of rack-and-pinion transmission design with increased resource. Diagnostyka, 2022, 23, 1-8.	0.8	1
5	Modification of Two-Stage Coaxial Gearbox. Lecture Notes in Mechanical Engineering, 2021, , 28-35.	0.4	5
6	Modeling of Worm Gear Design with Non-clearance Engagement. Lecture Notes in Mechanical Engineering, 2021, , 36-46.	0.4	5
7	Research of the Spindle Units for Multioperational Lathes in the APM WinMachine Environment. Lecture Notes in Mechanical Engineering, 2021, , 41-51.	0.4	О
8	Modelling of machining center vibration stability by the D-partitions method. Journal of Physics: Conference Series, 2021, 1745, 012085.	0.4	2
9	Selection of worm gearing optimal structure for machine rotary table. Diagnostyka, 2021, 22, 3-10.	0.8	4
10	Research of the Influence of Conditions of D-gun Spraying on Properties of Tungsten and Chromium Carbides Coatings. Lecture Notes in Mechanical Engineering, 2021, , 300-310.	0.4	1
11	Redesign of V Belts. Russian Engineering Research, 2021, 41, 916-918.	0.6	О
12	Research of the Machining Center Electromechanical Drive with Technological Feedback. , 2021, , .		0
13	Choice of Correcting Link for Electrohydraulic Servo Drive of Technological Equipment. Lecture Notes in Mechanical Engineering, 2020, , 702-710.	0.4	12
14	Optimization of Processing Modes on Multioperational Machines Using Two-parameter D-Partitions. , 2020, , .		0
15	Modeling of vertical spindle head for machining center. Journal of Physics: Conference Series, 2020, 1553, 012012.	0.4	20
16	Mathematical model for dynamic characteristics of automatic electrohydraulic drive for technological equipment. Journal of Physics: Conference Series, 2020, 1553, 012013.	0.4	5
17	Design Calculation of Electrohydraulic Servo Drive for Technological Equipment. Lecture Notes in Mechanical Engineering, 2020, , 75-84.	0.4	20
18	Research of modified gear drive for multioperational machine with increased load capacity. Diagnostyka, 2020, 21, 87-93.	0.8	24

#	Article	IF	CITATIONS
19	Modeling of Spindle Node Dynamics Using the Spectral Analysis Method. Lecture Notes in Mechanical Engineering, 2020, , 35-44.	0.4	21
20	Research of toothed belt transmission with arched teeth. Diagnostyka, 2020, 21, 15-22.	0.8	21
21	Dynamics Research and Automatic Control of Technological Equipment with Electrohydraulic Drive. , 2019, , .		23
22	3D modelling of angular spindle's head for machining centre. Journal of Physics: Conference Series, 2019, 1278, 012002.	0.4	19
23	Nonlinear simulation of electrohydraulic drive for technological equipment. Journal of Physics: Conference Series, 2019, 1278, 012003.	0.4	20
24	Parametric Modeling of Transverse Layout for Machine Tool Gearboxes. Lecture Notes in Mechanical Engineering, 2019, , 122-130.	0.4	23
25	Parametric Modeling of Gear Cutting Tools. Lecture Notes in Mechanical Engineering, 2019, , 3-11.	0.4	21
26	RATIONAL CHOICE OF MACHINE TOOLS FOR DESIGNERS. , 2019, , .		2
27	ENGINEERING FORECASTING OF MACHINE TOOLS FOR DESIGNERS., 2019, , .		0
28	Automatic Control System for Electrohydraulic Drive of Production Equipment. , 2018, , .		24
29	Modeling Carrier System Dynamics for Metal-Cutting Machines. , 2018, , .		18
30	Modelling of spindle nodes for machining centers. Journal of Physics: Conference Series, 2018, 1084, 012007.	0.4	17
31	Development of models and research into tooling for machining centers. Eastern-European Journal of Enterprise Technologies, 2018, 3, 12-22.	0.5	27
32	RATIONAL CHOICE OF TWO-SUPPORT SPINDLES FOR MACHINING CENTERS WITH LUBRICATION SYSTEM. EUREKA, Physics and Engineering, 2018, 3, 52-58.	0.8	1
33	RATIONAL CHOICE OF MACHINING TOOLS USING PREDICTION PROCEDURES. EUREKA, Physics and Engineering, 2018, 4, 14-20.	0.8	1
34	Installations Criterion of Deceleration Device in Volumetric Hydraulic Drive. Procedia Engineering, 2017, 206, 936-943.	1.2	25
35	Gear Clutch with Modified Tooth Profiles. Procedia Engineering, 2017, 206, 979-984.	1.2	24
36	Geometric Aspects of Modifications of Tapered Roller Bearings. Procedia Engineering, 2016, 150, 1107-1112.	1.2	20

OLEG KROL

#	Article	IF	CITATIONS
37	Modeling of the Main Spindle of Multifunction Machine. Vestnik Tambovskogo Gosudarstvennogo Tehnicheskogo Universiteta, 2016, 22, 471-480.	0.0	2
38	Solid modeling of machining centre SVM1F4 in KOMPAS 3D. Eastern-European Journal of Enterprise Technologies, 2014, 4, 13.	0.5	1
39	Parametric Modeling of Machine Tools. , 0, , .		O