Jordi Viñas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7273030/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	DNA Methylation of the Gonadal Aromatase (cyp19a) Promoter Is Involved in Temperature-Dependent Sex Ratio Shifts in the European Sea Bass. PLoS Genetics, 2011, 7, e1002447.	3.5	457
2	Comparative phylogeography of Atlantic bluefin tuna and swordfish: the combined effects of vicariance, secondary contact, introgression, and population expansion on the regional phylogenies of two highly migratory pelagic fishes. Molecular Phylogenetics and Evolution, 2005, 36, 169-187.	2.7	194
3	A Validated Methodology for Genetic Identification of Tuna Species (Genus Thunnus). PLoS ONE, 2009, 4, e7606.	2.5	125
4	Consequences of the historical demography on the global population structure of two highly migratory cosmopolitan marine fishes: the yellowfin tuna (Thunnus albacares) and the skipjack tuna (Katsuwonus pelamis). BMC Evolutionary Biology, 2005, 5, 19.	3.2	106
5	Phylogeography of the Atlantic bonito (Sarda sarda) in the northern Mediterranean: the combined effects of historical vicariance, population expansion, secondary invasion, and isolation by distance. Molecular Phylogenetics and Evolution, 2004, 33, 32-42.	2.7	82
6	Inter-oceanic genetic differentiation among albacore (Thunnus alalunga) populations. Marine Biology, 2004, 145, 225.	1.5	73
7	Stage-Specific Gene Expression During Fish Spermatogenesis as Determined by Laser-Capture Microdissection and Quantitative-PCR in Sea Bass (Dicentrarchus labrax) Gonads1. Biology of Reproduction, 2008, 79, 738-747.	2.7	72
8	Identification of Two Isoforms of the Kisspeptin-1 Receptor (kiss1r) Generated by Alternative Splicing in a Modern Teleost, the Senegalese Sole (Solea senegalensis)1. Biology of Reproduction, 2009, 80, 60-69.	2.7	71
9	Genomic resources for a commercial flatfish, the Senegalese sole (Solea senegalensis): EST sequencing, oligo microarray design, and development of the bioinformatic platform Soleamold. BMC Genomics, 2008, 9, 508.	2.8	70
10	Gene structure analysis of kisspeptin-2 (Kiss2) in the Senegalese sole (Solea senegalensis): Characterization of two splice variants of Kiss2, and novel evidence for metabolic regulation of kisspeptin signaling in non-mammalian species. Molecular and Cellular Endocrinology, 2011, 339, 14-24.	3.2	62
11	The kisspeptin system genes in teleost fish, their structure and regulation, with particular attention to the situation in Pleuronectiformes. General and Comparative Endocrinology, 2013, 188, 258-268.	1.8	61
12	Balancing the effects of rearing at low temperature during early development on sex ratios, growth and maturation in the European sea bass (Dicentrarchus labrax) Aquaculture, 2009, 296, 347-358.	3.5	51
13	Gene structure of the Kiss1 receptor-2 (Kiss1r-2) in the Atlantic halibut: Insights into the evolution and regulation of Kiss1r genes. Molecular and Cellular Endocrinology, 2010, 317, 78-89.	3.2	48
14	Hierarchical analyses of genetic variation of samples from breeding and feeding grounds confirm the genetic partitioning of northwest Atlantic and South Atlantic populations of swordfish (Xiphias) Tj ETQq0 0 0 rg	BT 10 9verlo	ck4120 Tf 50 2
15	Tuna Species Substitution in the Spanish Commercial Chain: A Knock-On Effect. PLoS ONE, 2017, 12, e0170809.	2.5	39
16	Genetic differentiation between eastern and western Mediterranean swordfish revealed by phylogeographic analysis of the mitochondrial DNA control region. ICES Journal of Marine Science, 2010, 67, 1222-1229.	2.5	34
17	Genetic isolation between Atlantic and Mediterranean albacore populations inferred from mitochondrial and nuclear DNA markers. Journal of Fish Biology, 2005, 66, 1545-1557.	1.6	30
18	Sex-specific changes in the expression of kisspeptin, kisspeptin receptor, gonadotropins and gonadotropin receptors in the Senegalese sole (Solea senegalensis) during a full reproductive cycle. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2012, 162, 364-371.	1.8	30

Jordi Viñas

#	Article	IF	CITATIONS
	Facts and uncertainties about the genetic population structure of Atlantic bluefin tuna (Thunnus) Tj ETQq1	1 0.784314 rgB1	[/Overlock
19	Fisheries, 2011, 21, 527-541.	4.9	29
20	Determination of Atlantic bluefin tuna (Thunnus thynnus) spawning time within a transport cage in the western Mediterranean. ICES Journal of Marine Science, 2009, 66, 2205-2210.	2.5	28
21	Spawning groups of European anchovy: population structure and management implications. ICES Journal of Marine Science, 2008, 65, 1635-1644.	2.5	27
22	Genetic population structure of European anchovy in the Mediterranean Sea and the Northeast Atlantic Ocean using sequence analysis of the mitochondrial DNA control region. ICES Journal of Marine Science, 2014, 71, 391-397.	2.5	27
23	Genetic identification of cryptic juveniles of little skate and winter skate Journal of Fish Biology, 2005, 66, 1177-1182.	1.6	23
24	Gonadal sex differentiation in the Senegalese sole (Solea senegalensis) and first data on the experimental manipulation of its sex ratios. Aquaculture, 2013, 384-387, 74-81.	3.5	21
25	Genetic variability in the complete mitochondrial control region of the Eurasian otter (Lutra lutra) in the Iberian Peninsula. Biological Journal of the Linnean Society, 2005, 86, 397-403.	1.6	17
26	Genetic characterization of the Asian clam species complex (Corbicula) invasion in the Iberian Peninsula. Hydrobiologia, 2017, 784, 349-365.	2.0	16
27	Phylogeography and phylogeny of the epineritic cosmopolitan bonitos of the genus <i>Sarda</i> (Cuvier): inferred patterns of intra―and interâ€oceanic connectivity derived from nuclear and mitochondrial DNA data. Journal of Biogeography, 2010, 37, 557-570.	3.0	15
28	Stage-specific gene expression during spermatogenesis in the Senegalese sole (Solea senegalensis), a fish with semi-cystic type of spermatogenesis, as assessed by laser capture microdissection and absolute quantitative PCR. General and Comparative Endocrinology, 2013, 188, 242-250.	1.8	15
29	Evidence of Alternative Splicing as a Regulatory Mechanism for Kissr2 in Pejerrey Fish. Frontiers in Endocrinology, 2018, 9, 604.	3.5	15
30	Multilocus Bayesian Estimates of Intra-Oceanic Genetic Differentiation, Connectivity, and Admixture in Atlantic Swordfish (Xiphias gladius L.). PLoS ONE, 2015, 10, e0127979.	2.5	15
31	Glacial refuges for threeâ€spined stickleback in the <scp>I</scp> berian <scp>P</scp> eninsula: mitochondrial <scp>DNA</scp> phylogeography. Freshwater Biology, 2015, 60, 1794-1809.	2.4	14
32	Using Massive Parallel Sequencing for the Development, Validation, and Application of Population Genetics Markers in the Invasive Bivalve Zebra Mussel (Dreissena polymorpha). PLoS ONE, 2015, 10, e0120732.	2.5	13
33	Validated methodology for quantifying infestation levels of dreissenid mussels in environmental DNA (eDNA) samples. Scientific Reports, 2016, 6, 39067.	3.3	12
34	Multilocus Comparative Phylogeography of Two Aristeid Shrimps of High Commercial Interest (Aristeus antennatus and Aristaeomorpha foliacea) Reveals Different Responses to Past Environmental Changes. PLoS ONE, 2013, 8, e59033.	2.5	12
35	Variability of the melanocortin 1 receptor (MC1R) gene explains the segregation of the bronze locus in turkey (Meleagris gallopavo). Poultry Science, 2010, 89, 1599-1602.	3.4	10
36	Genetic analysis reveals the presence of frigate tuna (<i>Auxis thazard</i>) in the bullet tuna (<i>Auxis rochei</i>) fishery of the Iberian Peninsula and the western-central Mediterranean Sea. Bulletin of Marine Science, 2019, 95, 317-325.	0.8	7

Jordi Viñas

#	Article	IF	CITATIONS
37	Unravelling the drivers of variability in body condition and reproduction of the European sardine along the Atlantic-Mediterranean transition. Marine Environmental Research, 2022, 179, 105697.	2.5	6
38	Identification of 246 microsatellites in the Asiatic clam (Corbicula fluminea). Conservation Genetics Resources, 2015, 7, 393-395.	0.8	5
39	Genetic characterization of the invasive zebra mussel (Dreissena polymorpha) in the Iberian Peninsula. Hydrobiologia, 2016, 779, 227-242.	2.0	5
40	Genetic support for the morphological identification of larvae of Myctophidae, Gonostomatidae, Sternoptychidae and Phosichthyidae (Pisces) from the western Mediterranean. Scientia Marina, 2014, 78, 461-471.	0.6	5
41	Population genetics meets phylogenetics: new insights into the relationships among members of the genus Euthynnus (family Scombridae). Hydrobiologia, 2022, 849, 47-62.	2.0	5
42	The current knowledge status of the genetic population structure of the European sardine (Sardina) Tj ETQq0 0 C and Fisheries, 2022, 32, 745-763.) rgBT /Ove 4.9	erlock 10 Tf : 5
43	Individual Spawning Duration of Captive Atlantic Bluefin Tuna (Thunnus thynnus) Revealed by Mitochondrial DNA Analysis of Eggs. PLoS ONE, 2015, 10, e0136733.	2.5	4
44	Disparate past demographic histories of three small Scombridae (Actinopterygii) species in Tunisian waters. Hydrobiologia, 2015, 758, 19-30.	2.0	4
45	Loss of genetic variability in a hatchery strain of Senegalese sole (<i>Solea senegalensis</i>) revealed by sequence data of the mitochondrial DNA control region and microsatellite markers. Scientia Marina, 2012, 76, 225-235.	0.6	4
46	Somatic Condition and Reproductive Potential as a Tandem in European Sardine: An Analysis with an Environmental Perspective in the Northern Adriatic (Gulf of Trieste). Fishes, 2022, 7, 105.	1.7	4
47	Genetic validation of the unexpected presence of a tropical tuna, bigeye tuna (Thunnus obesus), in the Mediterranean. Journal of Fish Biology, 2021, 99, 1761-1764.	1.6	1
48	Atlantic Bonito (Sarda sarda) Genomic ddRadSeq Analysis Confirms Population Differentiation across Northeast Atlantic and Mediterranean Locations—Implications for Fishery Management. , 0, , .		0
49	Exploring Parasitic Load in European Sardine: Applying Two Methodological Approaches along the Catalan Coast. , 0, , .		0