Gretta Pecl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7272693/publications.pdf Version: 2024-02-01

CDETTA DECL

#	Article	IF	CITATIONS
1	Co-production of knowledge and strategies to support climate resilient fisheries. ICES Journal of Marine Science, 2023, 80, 358-361.	1.2	6
2	Engaged Journalism and Climate Change: Lessons From an Audience-led, Locally Focused Australian Collaboration. Journalism Practice, 2022, 16, 19-34.	1.5	6
3	Developing achievable alternate futures for key challenges during the UN Decade of Ocean Science for Sustainable Development. Reviews in Fish Biology and Fisheries, 2022, 32, 19-36.	2.4	26
4	Connecting to the oceans: supporting ocean literacy and public engagement. Reviews in Fish Biology and Fisheries, 2022, 32, 123-143.	2.4	63
5	Poleward bound: adapting to climate-driven species redistribution. Reviews in Fish Biology and Fisheries, 2022, 32, 231-251.	2.4	34
6	Warming world, changing ocean: mitigation and adaptation to support resilient marine systems. Reviews in Fish Biology and Fisheries, 2022, 32, 39-63.	2.4	10
7	Attributes of climate resilience in fisheries: From theory to practice. Fish and Fisheries, 2022, 23, 522-544.	2.7	37
8	A Citizen Science Community of Practice: Relational Patterns Contributing to Shared Practice. Citizen Science: Theory and Practice, 2022, 7, 3.	0.6	5
9	Future Seas 2030: pathways to sustainability for the UN Ocean Decade and beyond. Reviews in Fish Biology and Fisheries, 2022, 32, 1-7.	2.4	2
10	Safeguarding marine life: conservation of biodiversity and ecosystems. Reviews in Fish Biology and Fisheries, 2022, 32, 65-100.	2.4	19
11	Metabolic plasticity improves lobster's resilience to ocean warming but not to climate-driven novel species interactions. Scientific Reports, 2022, 12, 4412.	1.6	2
12	Climate vulnerability assessment of key fishery resources in the Northern Humboldt Current System. Scientific Reports, 2022, 12, 4800.	1.6	9
13	Foresighting future oceans: Considerations and opportunities. Marine Policy, 2022, 140, 105021.	1.5	7
14	World Octopus Fisheries. Reviews in Fisheries Science and Aquaculture, 2021, 29, 279-429.	5.1	65
15	Hot fish: The response to climate change by regional fisheries bodies. Marine Policy, 2021, 123, 104284.	1.5	23
16	Ecological-Fishery Forecasting of Squid Stock Dynamics under Climate Variability and Change: Review, Challenges, and Recommendations. Reviews in Fisheries Science and Aquaculture, 2021, 29, 682-705.	5.1	19
17	Stakeholder influence and relationships inform engagement strategies in marine conservation. Ecosystems and People, 2021, 17, 320-341.	1.3	9
18	Species on the move around the Australian coastline: A continentalâ€scale review of climateâ€driven species redistribution in marine systems. Global Change Biology, 2021, 27, 3200-3217.	4.2	59

#	Article	IF	CITATIONS
19	Climate change impacts on China's marine ecosystems. Reviews in Fish Biology and Fisheries, 2021, 31, 599-629.	2.4	24
20	Stakeholder perceptions on actions for marine fisheries adaptation to climate change. Marine and Freshwater Research, 2021, 72, 1430-1444.	0.7	1
21	Oceanographic habitat suitability is positively correlated with the body condition of a coastalâ€pelagic fish. Fisheries Oceanography, 2020, 29, 100-110.	0.9	17
22	Science Must Embrace Traditional and Indigenous Knowledge to Solve Our Biodiversity Crisis. One Earth, 2020, 3, 162-165.	3.6	83
23	Cultural and linguistic diversities are underappreciated pillars of biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26539-26543.	3.3	33
24	A crossâ€scale framework to support a mechanistic understanding and modelling of marine climateâ€driven species redistribution, from individuals to communities. Ecography, 2020, 43, 1764-1778.	2.1	22
25	Functional traits explain trophic allometries of cephalopods. Journal of Animal Ecology, 2020, 89, 2692-2703.	1.3	12
26	Temperature alters the physiological response of spiny lobsters under predation risk. , 2020, 8, coaa065.		5
27	An Assessment of How Australian Fisheries Management Plans Account for Climate Change Impacts. Frontiers in Marine Science, 2020, 7, .	1.2	6
28	Mismatch of thermal optima between performance measures, life stages and species of spiny lobster. Scientific Reports, 2020, 10, 21235.	1.6	6
29	Decision support for the Ecosystem-Based Management of a Range-Extending Species in a Global Marine Hotspot Presents Effective Strategies and Challenges. Ecosystems, 2020, , 1.	1.6	1
30	Physiological mechanisms linking cold acclimation and the poleward distribution limit of a range-extending marine fish. , 2020, 8, coaa045.		12
31	Social licence for marine protected areas. Marine Policy, 2020, 115, 103782.	1.5	9
32	To Achieve a Sustainable Blue Future, Progress Assessments Must Include Interdependencies between the Sustainable Development Goals. One Earth, 2020, 2, 161-173.	3.6	77
33	Responding to Climate Change: Participatory Evaluation of Adaptation Options for Key Marine Fisheries in Australia's South East. Frontiers in Marine Science, 2020, 7, .	1.2	12
34	Fish body sizes change with temperature but not all species shrink with warming. Nature Ecology and Evolution, 2020, 4, 809-814.	3.4	103
35	Maximising the utility of bioelectrical impedance analysis for measuring fish condition requires identifying and controlling for sources of error. Fisheries Research, 2020, 229, 105575.	0.9	7
36	Let's Talk about Climate Change: Developing Effective Conversations between Scientists and Communities. One Earth, 2020, 3, 415-419.	3.6	20

#	Article	IF	CITATIONS
37	Citizen science and marine conservation: a global review. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190461.	1.8	75
38	Changing windows of opportunity: past and future climate-driven shifts in temporal persistence of kingfish (Seriola lalandi) oceanographic habitat within south-eastern Australian bioregions. Marine and Freshwater Research, 2019, 70, 33.	0.7	32
39	Progress in integrating natural and social science in marine ecosystem-based management research. Marine and Freshwater Research, 2019, 70, 71.	0.7	53
40	Ten tips for developing interdisciplinary socio-ecological researchers. Socio-Ecological Practice Research, 2019, 1, 149-161.	0.9	85
41	Marine recreational fishing and the implications of climate change. Fish and Fisheries, 2019, 20, 977-992.	2.7	55
42	Persecuting, protecting or ignoring biodiversity under climate change. Nature Climate Change, 2019, 9, 581-586.	8.1	47
43	Anticipating arrival: Tackling the national challenges associated with the redistribution of biodiversity driven by climate change. Journal of Applied Ecology, 2019, 56, 2298-2304.	1.9	9
44	Prepared for change? An assessment of the current state of knowledge to support climate adaptation for Australian fisheries. Reviews in Fish Biology and Fisheries, 2019, 29, 877-894.	2.4	11
45	Ontogenetic deepening of Northeast Atlantic fish stocks is not driven by fishing exploitation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2390-2392.	3.3	10
46	Citizen science and social licence: Improving perceptions and connecting marine user groups. Ocean and Coastal Management, 2019, 178, 104855.	2.0	21
47	Autonomous adaptation to climate-driven change in marine biodiversity in a global marine hotspot. Ambio, 2019, 48, 1498-1515.	2.8	41
48	Governance mapping: A framework for assessing the adaptive capacity of marine resource governance to environmental change. Marine Policy, 2019, 106, 103392.	1.5	11
49	A practical framework for implementing and evaluating integrated management of marine activities. Ocean and Coastal Management, 2019, 177, 127-138.	2.0	73
50	Tools to Enrich Vulnerability Assessment and Adaptation Planning for Coastal Communities in Data-Poor Regions: Application to a Case Study in Madagascar. Frontiers in Marine Science, 2019, 5, .	1.2	18
51	Ecological connectivity between the areas beyond national jurisdiction and coastal waters: Safeguarding interests of coastal communities in developing countries. Marine Policy, 2019, 104, 90-102.	1.5	96
52	Social license through citizen science: a tool for marine conservation. Ecology and Society, 2019, 24, .	1.0	34
53	The ecological role of cephalopods and their representation in ecosystem models. Reviews in Fish Biology and Fisheries, 2019, 29, 313-334.	2.4	51
54	Understanding interactions between plasticity, adaptation and range shifts in response to marine environmental change. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180186.	1.8	145

#	Article	IF	CITATIONS
55	Redmap Australia: Challenges and Successes With a Large-Scale Citizen Science-Based Approach to Ecological Monitoring and Community Engagement on Climate Change. Frontiers in Marine Science, 2019, 6, .	1.2	57
56	Introduction: Autochthonous human adaptation to biodiversity change in the Anthropocene. Ambio, 2019, 48, 1389-1400.	2.8	8
57	Multiple measures of thermal performance of early stage eastern rock lobster in a fast-warming ocean region. Marine Ecology - Progress Series, 2019, 624, 1-11.	0.9	8
58	Spot, log, map: Assessing a marine virtual citizen science program against Reed's best practice for stakeholder participation in environmental management. Ocean and Coastal Management, 2018, 151, 1-9.	2.0	19
59	Southernmost records of two Seriola species in an Australian ocean-warming hotspot. Marine Biodiversity, 2018, 48, 1579-1582.	0.3	15
60	Managing consequences of climateâ€driven species redistribution requires integration of ecology, conservation and social science. Biological Reviews, 2018, 93, 284-305.	4.7	154
61	Social Licence for Marine Conservation Science. Frontiers in Marine Science, 2018, 5, .	1.2	14
62	Assessment of the likely sensitivity to climate change for the key marine species in the southern Benguela system. African Journal of Marine Science, 2018, 40, 279-292.	0.4	20
63	Population genetic signatures of a climate change driven marine range extension. Scientific Reports, 2018, 8, 9558.	1.6	31
64	Rapid shifts in distribution and high″atitude persistence of oceanographic habitat revealed using citizen science data from a climate change hotspot. Global Change Biology, 2018, 24, 5440-5453.	4.2	45
65	Deep impact of fisheries. Nature Ecology and Evolution, 2018, 2, 1348-1349.	3.4	12
66	Changes in metabolic rate of spiny lobster under predation risk. Marine Ecology - Progress Series, 2018, 598, 71-84.	0.9	20
67	Are fish outside their usual ranges early indicators of climateâ€driven range shifts?. Global Change Biology, 2017, 23, 2047-2057.	4.2	59
68	Recreational fishing in a time of rapid ocean change. Marine Policy, 2017, 76, 169-177.	1.5	15
69	Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science, 2017, 355, .	6.0	2,026
70	Social licence in the marine sector: A review of understanding and application. Marine Policy, 2017, 81, 21-28.	1.5	96
71	Effects of climate change on coral grouper (Plectropomus spp.) and possible adaptation options. Reviews in Fish Biology and Fisheries, 2017, 27, 297-316.	2.4	28
72	Going with the flow: the role of ocean circulation in global marine ecosystems under a changing climate. Global Change Biology, 2017, 23, 2602-2617.	4.2	52

#	Article	IF	CITATIONS
73	Setting objectives for evaluating management adaptation actions to address climate change impacts in southâ€eastern Australian fisheries. Fisheries Oceanography, 2016, 25, 29-44.	0.9	36
74	From physics to fish to folk: supporting coastal regional communities to understand their vulnerability to climate change in Australia. Fisheries Oceanography, 2016, 25, 19-28.	0.9	8
75	Spatial variation in mortality by inâ€pot predation in the Tasmanian rock lobster fishery. Fisheries Oceanography, 2016, 25, 6-18.	0.9	10
76	Assessing and reducing vulnerability to climate change: Moving from theory to practical decision-support. Marine Policy, 2016, 74, 220-229.	1.5	39
77	Citizens as Scientists. Science Communication, 2016, 38, 495-522.	1.8	41
78	Adapting Management of Marine Environments to a Changing Climate: A Checklist to Guide Reform and Assess Progress. Ecosystems, 2016, 19, 187-219.	1.6	62
79	Public Interest in Marine Citizen Science: Is there Potential for Growth?. BioScience, 2016, 66, 683-692.	2.2	53
80	Fisheries management approaches as platforms for climate change adaptation: Comparing theory and practice in Australian fisheries. Marine Policy, 2016, 71, 82-93.	1.5	63
81	Empirical evidence for different cognitive effects in explaining the attribution of marine range shifts to climate change. ICES Journal of Marine Science, 2016, 73, 1306-1318.	1.2	20
82	Modelling marine community responses to climateâ€driven species redistribution to guide monitoring and adaptive ecosystemâ€based management. Global Change Biology, 2016, 22, 2462-2474.	4.2	63
83	From global to regional and back again: common climate stressors of marine ecosystems relevant for adaptation across five ocean warming hotspots. Global Change Biology, 2016, 22, 2038-2053.	4.2	81
84	Planning adaptation to climate change in fast-warming marine regions with seafood-dependent coastal communities. Reviews in Fish Biology and Fisheries, 2016, 26, 249-264.	2.4	61
85	Understanding drivers, barriers and information sources for public participation in marine citizen science. Journal of Science Communication, 2016, 15, A02.	0.4	36
86	Reproductive capacity of a marine species (Octopus tetricus) within a recent range extension area. Marine and Freshwater Research, 2015, 66, 999.	0.7	17
87	Species traits and climate velocity explain geographic range shifts in an oceanâ€warming hotspot. Ecology Letters, 2015, 18, 944-953.	3.0	334
88	Measuring the vulnerability of marine social-ecological systems: a prerequisite for the identification of climate change adaptations. Ecology and Society, 2015, 20, .	1.0	65
89	Predation Risk within Fishing Gear and Implications for South Australian Rock Lobster Fisheries. PLoS ONE, 2015, 10, e0139816.	1.1	7
90	Rapid assessment of an ocean warming hotspot reveals "high―confidence in potential species' range extensions. Global Environmental Change, 2015, 31, 28-37.	3.6	88

#	Article	IF	CITATIONS
91	Facing the wave of change: stakeholder perspectives on climate adaptation for Australian seafood supply chains. Regional Environmental Change, 2015, 15, 595-606.	1.4	38
92	World Squid Fisheries. Reviews in Fisheries Science and Aquaculture, 2015, 23, 92-252.	5.1	211
93	Distinguishing geographical range shifts from artefacts of detectability and sampling effort. Diversity and Distributions, 2015, 21, 13-22.	1.9	52
94	The short history of research in a marine climate change hotspot: from anecdote to adaptation in south-east Australia. Reviews in Fish Biology and Fisheries, 2014, 24, 593.	2.4	37
95	Body Size, Growth and Life Span: Implications for the Polewards Range Shift of Octopus tetricus in South-Eastern Australia. PLoS ONE, 2014, 9, e103480.	1.1	35
96	Rapid assessment of fisheries species sensitivity to climate change. Climatic Change, 2014, 127, 505-520.	1.7	96
97	Statistical solutions for error and bias in global citizen science datasets. Biological Conservation, 2014, 173, 144-154.	1.9	374
98	Towards a diagnostic approach to climate adaptation for fisheries. Climatic Change, 2014, 122, 55-66.	1.7	24
99	Defining and observing stages of climate-mediated range shifts in marine systems. Global Environmental Change, 2014, 26, 27-38.	3.6	207
100	Climate change risks and adaptation options across Australian seafood supply chains – A preliminary assessment. Climate Risk Management, 2014, 1, 39-50.	1.6	61
101	Introduction: local and traditional knowledge and data management in the Arctic. Polar Geography, 2014, 37, 1-4.	0.8	13
102	Identification of global marine hotspots: sentinels for change and vanguards for adaptation action. Reviews in Fish Biology and Fisheries, 2014, 24, 415-425.	2.4	482
103	Ocean warming hotspots provide early warning laboratories for climate change impacts. Reviews in Fish Biology and Fisheries, 2014, 24, 409-413.	2.4	43
104	A Quantitative Metric to Identify Critical Elements within Seafood Supply Networks. PLoS ONE, 2014, 9, e91833.	1.1	30
105	Building blocks of economic resilience to climate change: a south east Australian fisheries example. Regional Environmental Change, 2013, 13, 1313-1323.	1.4	20
106	Assessing the risk of climate change to aquaculture: a case study from south-east Australia. Aquaculture Environment Interactions, 2013, 3, 163-175.	0.7	44
107	Socio-economic and management implications of range-shifting species in marine systems. Global Environmental Change, 2012, 22, 137-146.	3.6	83
108	Communicating climate change: Climate change risk perceptions and rock lobster fishers, Tasmania. Marine Policy, 2012, 36, 753-759.	1.5	77

#	Article	IF	CITATIONS
109	Longâ€ŧerm shifts in abundance and distribution of a temperate fish fauna: a response to climate change and fishing practices. Global Ecology and Biogeography, 2011, 20, 58-72.	2.7	387
110	Climate change cascades: Shifts in oceanography, species' ranges and subtidal marine community dynamics in eastern Tasmania. Journal of Experimental Marine Biology and Ecology, 2011, 400, 17-32.	0.7	525
111	Age determination in merobenthic octopuses using stylet increment analysis: assessing future challenges using Macroctopus maorum as a model. ICES Journal of Marine Science, 2011, 68, 2059-2063.	1.2	17
112	A multilevel approach to examining cephalopod growth using <i>Octopus pallidus</i> as a model. Journal of Experimental Biology, 2011, 214, 2799-2807.	0.8	19
113	Elemental fingerprints of southern calamary (<i>Sepioteuthis australis</i>) reveal local recruitment sources and allow assessment of the importance of closed areas. Canadian Journal of Fisheries and Aquatic Sciences, 2011, 68, 1351-1360.	0.7	18
114	Modelling climateâ€changeâ€induced nonlinear thresholds in cephalopod population dynamics. Global Change Biology, 2010, 16, 2866-2875.	4.2	44
115	Transgenerational marking of cephalopods with an enriched barium isotope: a promising tool for empirically estimating post-hatching movement and population connectivity. ICES Journal of Marine Science, 2010, 67, 1372-1380.	1.2	10
116	Effects of temperature on energetics and the growth pattern of benthic octopuses. Marine Ecology - Progress Series, 2009, 374, 167-179.	0.9	26
117	Modelling size-at-age in wild immature female octopus: a bioenergetics approach. Marine Ecology - Progress Series, 2009, 384, 159-174.	0.9	11
118	The potential impacts of climate change on inshore squid: biology, ecology and fisheries. Reviews in Fish Biology and Fisheries, 2008, 18, 373-385.	2.4	132
119	Reproductive status of Octopus pallidus, and its relationship to age and size. Marine Biology, 2008, 155, 375-385.	0.7	45
120	Quantitative elemental imaging of octopus stylets using PIXE and the nuclear microprobe. Nuclear Instruments & Methods in Physics Research B, 2008, 266, 67-72.	0.6	8
121	Early life-history processes in benthic octopus: Relationships between temperature, feeding, food conversion, and growth in juvenile Octopus pallidus. Journal of Experimental Marine Biology and Ecology, 2008, 354, 81-92.	0.7	14
122	Determining the age and growth of wild octopus using stylet increment analysis. Marine Ecology - Progress Series, 2008, 367, 213-222.	0.9	40
123	Batch or trickle: understanding the multiple spawning strategy of southern calamary, Sepioteuthis australis (Mollusca : Cephalopoda). Marine and Freshwater Research, 2008, 59, 987.	0.7	3
124	Using stylet elemental signatures to determine the population structure of Octopus maorum. Marine Ecology - Progress Series, 2008, 360, 125-133.	0.9	15
125	Stylet elemental signatures indicate population structure in a holobenthic octopus species, Octopus pallidus. Marine Ecology - Progress Series, 2008, 371, 1-10.	0.9	17
126	Cephalopod hatchling growth: the effects of initial size and seasonal temperatures. Marine Biology, 2007, 151, 1375-1383.	0.7	52

#	Article	IF	CITATIONS
127	Spawning aggregations of squid (Sepioteuthis australis) populations: a continuum of â€~microcohorts'. Reviews in Fish Biology and Fisheries, 2007, 17, 183-195.	2.4	12
128	Effects of commercial fishing on the population structure of spawning southern calamary (Sepioteuthis australis). Reviews in Fish Biology and Fisheries, 2007, 17, 207-221.	2.4	14
129	Approaches to resolving cephalopod movement and migration patterns. Reviews in Fish Biology and Fisheries, 2007, 17, 401-423.	2.4	106
130	Assessing the validity of stylets as ageing tools in Octopus pallidus. Journal of Experimental Marine Biology and Ecology, 2006, 338, 35-42.	0.7	53
131	Life history of a short-lived squid (Sepioteuthis australis): resource allocation as a function of size, growth, maturation, and hatching season. ICES Journal of Marine Science, 2006, 63, 995-1004.	1.2	24
132	Use of acoustic telemetry for spatial management of southern calamary Sepioteuthis australis, a highly mobile inshore squid species. Marine Ecology - Progress Series, 2006, 328, 1-15.	0.9	40
133	Inter-annual plasticity of squid life history and population structure: ecological and management implications. Oecologia, 2004, 139, 515-524.	0.9	68
134	The in situ relationships between season of hatching, growth and condition in the southern calamary, Sepioteuthis australis. Marine and Freshwater Research, 2004, 55, 429.	0.7	36
135	The role of hatchling size in generating the intrinsic size-at-age variability of cephalopods: extending the Forsythe Hypothesis. Marine and Freshwater Research, 2004, 55, 387.	0.7	48
136	Understanding octopus growth: patterns, variability and physiology. Marine and Freshwater Research, 2004, 55, 367.	0.7	117
137	Life history traits of the temperate mini-maximalist Idiosepius notoides, (Cephalopoda: Sepioidea). Journal of the Marine Biological Association of the United Kingdom, 2003, 83, 1297-1300.	0.4	20
138	The dynamics of the summer-spawning population of the loliginid squid Sepioteuthis australis in Tasmania, Australia—a conveyor belt of recruits. ICES Journal of Marine Science, 2003, 60, 290-296.	1.2	23
139	Are bigger calamary Sepioteuthis australis hatchlings more likely to survive? A study based on statolith dimensions. Marine Ecology - Progress Series, 2003, 261, 175-182.	0.9	36
140	Flexible reproductive strategies in tropical and temperate Sepioteuthis squids. Marine Biology, 2001, 138, 93-101.	0.7	62
141	Somatic growth processes: how are they altered in captivity?. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 1133-1139.	1.2	18
142	Changes in muscle structure associated with somatic growth inIdiosepius pygmaeus, a small tropical cephalopod. Journal of Zoology, 1997, 242, 751-764.	0.8	20
143	Prioritization of the Sustainable Development Goals Drives Opportunities and Risks for a Blue Future. SSRN Electronic Journal, 0, , .	0.4	0