Shibo Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7272035/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impact of different reanalysis data on WRF dynamical downscaling over China. Atmospheric Research, 2018, 200, 25-35.	4.1	44
2	An Advanced Lipid Metabolism System Revealed by Transcriptomic and Lipidomic Analyses Plays a Central Role in Peanut Cold Tolerance. Frontiers in Plant Science, 2020, 11, 1110.	3.6	38
3	Comparative Transcriptome-Based Mining and Expression Profiling of Transcription Factors Related to Cold Tolerance in Peanut. International Journal of Molecular Sciences, 2020, 21, 1921.	4.1	29
4	A Scheme to Assimilate "No Rain―Observations from Doppler Radar. Weather and Forecasting, 2018, 33, 71-88.	1.4	25
5	Dynamical downscaling of surface air temperature and precipitation using RegCM4 and WRF over China. Climate Dynamics, 2020, 55, 1283-1302.	3.8	16
6	Impact of different cumulus convective parameterization schemes on the simulation of precipitation over China. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 69, 1406264.	1.7	15
7	Comparison of 3DVar and EnSRF Data Assimilation Using Radar Observations for the Analysis and Prediction of an MCS. Advances in Meteorology, 2018, 2018, 1-18.	1.6	9
8	The development of a hybrid EnSRF-En3DVar system for convective-scale data assimilation. Atmospheric Research, 2019, 229, 208-223.	4.1	9
9	WRF ensemble dynamical downscaling of precipitation over China using different cumulus convective schemes. Atmospheric Research, 2022, 271, 106116.	4.1	7
10	Analysis and prediction of a mesoscale convective system over East China with an ensemble square root filter radar data assimilation approach. Atmospheric Science Letters, 2018, 19, e806.	1.9	6
11	Assimilating Conventional and Doppler Radar Data with a Hybrid Approach to Improve Forecasting of a Convective System. Atmosphere, 2017, 8, 188.	2.3	5
12	Impact of the Hierarchical Ensemble Filter Covariance Localization Method on EnKF Radar Data Assimilation: Observing system simulation experiments. Atmospheric Research, 2020, 245, 105070.	4.1	4
13	Impact of assimilating radar data using a hybrid 4DEnVar approach on prediction of convective events. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 73, 1903770.	1.7	4
14	Assimilation of no-precipitation observations from Doppler radar with 4DVar and its impact on summertime convective event prediction. Atmospheric Research, 2021, 257, 105617.	4.1	3
15	Application of a Bayesian inflation approach to EnSRF radar data assimilation to improve the analysis and forecasting of an MCS. Meteorological Applications, 2020, 27, e1801.	2.1	1
16	Assimilation of Doppler Radar Data with an Ensemble 3DEnVar Approach to Improve Convective Forecasting. Advances in Atmospheric Sciences, 2021, 38, 132-146.	4.3	1
17	Dynamical downscaling of temperature extremes over China using the WRF model driven by different lateral boundary conditions. Atmospheric Research, 2022, 278, 106348.	4.1	1