Basil K Papadopoulos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/727196/publications.pdf

Version: 2024-02-01

92 papers 878 citations

567281 15 h-index 26 g-index

95 all docs 95 docs citations 95 times ranked 590 citing authors

#	Article	IF	Citations
1	Real time DDoS detection using fuzzy estimators. Computers and Security, 2012, 31, 782-790.	6.0	69
2	A fuzzy multicriteria categorization of the GALDIT method to assess seawater intrusion vulnerability of coastal aquifers. Science of the Total Environment, 2018, 621, 524-534.	8.0	67
3	On the fuzzy difference equation xn+1=A+xn/xnâ^'m. Fuzzy Sets and Systems, 2002, 129, 73-81.	2.7	56
4	On theoretical pricing of options with fuzzy estimators. Journal of Computational and Applied Mathematics, 2009, 223, 552-566.	2.0	52
5	Distance and similarity measures for fuzzy operators. Information Sciences, 2007, 177, 2336-2348.	6.9	48
6	On the fuzzy difference equation $x + 1 = A + B/x$ n. Soft Computing, 2002, 6, 456-461.	3.6	47
7	On the fuzzy difference equations of finance. Fuzzy Sets and Systems, 2008, 159, 3259-3270.	2.7	46
8	Fuzzy logic systems and medical applications. AIMS Neuroscience, 2019, 6, 266-272.	2.3	36
9	Penetrability of microfine cement grouts: experimental investigation and fuzzy regression modeling. Canadian Geotechnical Journal, 2015, 52, 868-882.	2.8	35
10	Fuzzy Surrogate Safety Metrics for real-time assessment of rear-end collision risk. A study based on empirical observations. Accident Analysis and Prevention, 2020, 148, 105794.	5.7	32
11	Similarities and distances in fuzzy regression modeling. Soft Computing, 2004, 8, 556-561.	3.6	20
12	Computational method to evaluate fuzzy arithmetic operations. Applied Mathematics and Computation, 2007, 185, 169-177.	2,2	20
13	Cost–volume–profit analysis under uncertainty: a model with fuzzy estimators based on confidence intervals. International Journal of Production Research, 2009, 47, 5977-5999.	7.5	17
14	Fuzzy Performance Evaluation of Workflow Stochastic Petri Nets by Means of Block Reduction. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 2010, 40, 352-362.	2.9	17
15	Cost and Land Functions for Wastewater Treatment Projects: Typical Simple Linear Regression versus Fuzzy Linear Regression. Journal of Environmental Engineering, ASCE, 2007, 133, 581-586.	1.4	16
16	The Use of Fuzzy Linear Regression and ANFIS Methods to Predict the Compressive Strength of Cement. Symmetry, 2020, 12, 1295.	2.2	15
17	Producing fuzzy inclusion and entropy measures and their application on global image thresholding. Evolving Systems, 2018, 9, 331-353.	3.9	14
18	Possibilistic Moments for the Task Duration in Fuzzy PERT. Journal of Management in Engineering - ASCE, 2015, 31, .	4.8	12

#	Article	IF	CITATIONS
19	Local thresholding of degraded or unevenly illuminated documents using fuzzy inclusion and entropy measures. Evolving Systems, 2019, 10, 593-619.	3.9	12
20	Decision Making for Project Appraisal in Uncertain Environments: A Fuzzy-Possibilistic Approach of the Expanded NPV Method. Symmetry, 2021, 13, 27.	2.2	12
21	Global Image Thresholding Adaptive Neuro-Fuzzy Inference System Trained with Fuzzy Inclusion and Entropy Measures. Symmetry, 2019, 11, 286.	2.2	11
22	A Method of Generating Fuzzy Implications with Specific Properties. Symmetry, 2020, 12, 155.	2.2	11
23	A METHOD FOR THE EVALUATION AND SELECTION OF AN APPROPRIATE FUZZY IMPLICATION BY USING STATISTICAL DATA. Fuzzy Economic Review, 2015, 20, .	0.4	11
24	SAGMADâ€"A Signature Agnostic Malware Detection System Based on Binary Visualisation and Fuzzy Sets. Electronics (Switzerland), 2022, 11, 1044.	3.1	10
25	FUZZY SETS AND FUZZY RELATIONAL STRUCTURES AS CHU SPACES. International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, 2000, 08, 471-479.	1.9	8
26	Approaching activity duration in PERT by means of fuzzy sets theory and statistics. Journal of Intelligent and Fuzzy Systems, 2014, 26, 577-587.	1.4	8
27	A hybrid probabilistic bi-sector fuzzy regression based methodology for normal distributed hydrological variable. Evolving Systems, 2020, 11, 255-268.	3.9	8
28	Fuzzy Solution to the Unconfined Aquifer Problem. Water (Switzerland), 2019, 11, 54.	2.7	7
29	Fuzzy-statistical prediction intervals from crisp regression models. Evolving Systems, 2020, 11, 201-213.	3.9	7
30	Fuzzy linear regression analysis for groundwater response to meteorological drought in the aquifer system of Xanthi plain, NE Greece. Journal of Hydroinformatics, 2021, 23, 1112-1129.	2.4	7
31	Hybrid (fuzzy-stochastic) modelling in construction operations management. International Journal of Machine Learning and Cybernetics, 2013, 4, 339-346.	3.6	6
32	The order on the light cone and its induced topology. International Journal of Geometric Methods in Modern Physics, 2018, 15, 1850069.	2.0	6
33	Parametric Fuzzy Implications Produced via Fuzzy Negations with a Case Study in Environmental Variables. Symmetry, 2021, 13, 509.	2.2	6
34	A Study of (<i>T</i> , <i>N</i>)– and (<i>N</i> [′] , <i>T</i> , <i>N</i>)– Implications. Fuzzy Information and Engineering, 2021, 13, 277-295.	1.7	6
35	Safety aware fuzzy longitudinal controller for automated vehicles. Journal of Traffic and Transportation Engineering (English Edition), 2021, 8, 568-581.	4.2	6
36	An Application of Classical Logic's Laws in Formulas of Fuzzy Implications. Journal of Mathematics, 2020, 2020, 1-18.	1.0	6

3

#	Article	IF	CITATIONS
37	On two topologies that were suggested by Zeeman. Mathematical Methods in the Applied Sciences, 2018, 41, 7742-7747.	2.3	5
38	DDoS Attack Mitigation through Root-DNS Server: A Case Study. , 2019, , .		5
39	An Algorithm for Producing Fuzzy Negations via Conical Sections. Algorithms, 2019, 12, 89.	2.1	5
40	Fuzzy reasoning in the investigation of seismic behavior. Mathematical Methods in the Applied Sciences, 2020, 43, 7747-7757.	2.3	5
41	A Method for the Detection of the Most Suitable Fuzzy Implication for Data Applications. Communications in Computer and Information Science, 2017, , 242-255.	0.5	5
42	A hybrid fuzzy frequency factor based methodology for analyzing the hydrological drought., 0, 167, 385-397.		5
43	Framework for fuzzy surrogate metrics for modeling road safety. AIP Conference Proceedings, 2019, , .	0.4	4
44	On Sliced Spaces: Global Hyperbolicity Revisited. Symmetry, 2019, 11, 304.	2.2	4
45	A Study of GD′- Implications, a New Hyper Class of Fuzzy Implications. Mathematics, 2021, 9, 1925.	2.2	4
46	(Quasi)-uniformities on the set of bounded maps. International Journal of Mathematics and Mathematical Sciences, 1994, 17, 693-696.	0.7	3
47	Application of Fuzzy Sets for the Improvement of Routing Optimization Heuristic Algorithms. Transport and Telecommunication, 2016, 17, 350-361.	1.0	3
48	Models of Fuzzy Linear Regression: An Application in Engineering. Springer Optimization and Its Applications, 2016, , 693-713.	0.9	3
49	Hybrid Fuzzyâ€"Probabilistic Analysis and Classification of the Hydrological Drought. Proceedings (mdpi), 2018, 2, .	0.2	3
50	A Hybrid Fuzzy Regression-Based Methodology for Normal Distribution (Case Study: Cumulative) Tj ETQq0 0 0 rg	zBT/Overla	ock 10 Tf 50 2
51	The Use of Fuzzy Estimators for the Construction of a Prediction Model Concerning an Environmental Ecosystem. Sustainability, 2019, 11, 5039.	3.2	3
52	Selection of the most appropriate implication via a set of data. AIP Conference Proceedings, 2019, , .	0.4	3
53	An Algorithm for Fuzzy Negations Based-Intuitionistic Fuzzy Copula Aggregation Operators in Multiple Attribute Decision Making. Algorithms, 2020, 13, 154.	2.1	3
54	A Method of Generating Fuzzy Implications from n Increasing Functions and n + 1 Negations. Mathematics, 2020, 8, 886.	2.2	3

#	Article	ΙF	Citations
55	Fuzzy Implications Generating from Fuzzy Negations. Lecture Notes in Computer Science, 2018, , 736-744.	1.3	3
56	Forecast of tourism demand with the use of fuzzy and cointegration econometric techniques. Journal of Computational Methods in Sciences and Engineering, 2014, 14, 245-257.	0.2	2
57	Seismic behavior using fuzzy methods. AIP Conference Proceedings, 2018, , .	0.4	2
58	Constructing fuzzy numbers from arbitrary statistical intervals. , 2018, , .		2
59	Constructing fuzzy-statistical prediction intervals from crisp linear regression models. AIP Conference Proceedings, 2019, , .	0.4	2
60	On the Causal and Topological Structure of the 2-Dimensional Minkowski Space. Universe, 2019, 5, 70.	2.5	2
61	A method for the detection of the most suitable fuzzy implication for data applications. Evolving Systems, 2020, 11, 467-477.	3.9	2
62	Assessment of the Couple between the Historical Sample and the Theoretical Probability Distributions for Maximum flow Values Based on a Fuzzy Methodology. Environmental Sciences Proceedings, 2020, 2, 22.	0.3	2
63	Relating Hydro-Meteorological Variables to Water Table in an Unconfined Aquifer via Fuzzy Linear Regression. Environments - MDPI, 2021, 8, 9.	3.3	2
64	Variables' classification via equivalence relations for the trophic state of a Mediterranean ecosystem. Water Environment Research, 2021, 93, 1846-1854.	2.7	2
65	Unbiased Fuzzy Estimators in Fuzzy Hypothesis Testing. Algorithms, 2021, 14, 185.	2.1	2
66	Novel Construction of Copulas Based on (\hat{l}_\pm , \hat{l}^2) Transformation for Fuzzy Random Variables. Journal of Mathematics, 2021, 2021, 1-15.	1.0	2
67	Assessment of annual hydrological drought based on fuzzy estimators. , 2016, , 1047-1051.		2
68	Generalization of Fuzzy Connectives. Axioms, 2022, 11, 130.	1.9	2
69	Classification Of Road Accidents Using Fuzzy Techniques. , 2018, , .		1
70	Fuzzy simulated annealing optimizing the circular path around Greek cities. AIP Conference Proceedings, 2018, , .	0.4	1
71	Binarization of texts with varying lighting conditions using fuzzy inclusion and entropy measures. AIP Conference Proceedings, $2018,\ldots$	0.4	1
72	Preface of the Second Symposium on Fuzzy Logic with Engineering Applications. AIP Conference Proceedings, 2019, , .	0.4	1

#	Article	lF	CITATIONS
73	A new approach in seismic behavior using fuzzy methods. AIP Conference Proceedings, 2019, , .	0.4	1
74	Are four dimensions enough? A note on ambient cosmology. International Journal of Geometric Methods in Modern Physics, 2019, 16, 1950090.	2.0	1
75	Towards a Fair and More Transparent Rule-Based Valuation of Travel Time Savings. Sustainability, 2019, 11, 962.	3.2	1
76	Fuzzy p-Value of Hypotheses Tests with Crisp Data Using Non-Asymptotic Fuzzy Estimators. Journal of Stochastic Analysis, $2021, 2, .$	0.1	1
77	Fuzzy hypotheses tests for crisp data using non-asymptotic fuzzy estimators, fuzzy critical values and a degree of rejection or acceptance. Evolving Systems, 2021, 12, 723-740.	3.9	1
78	Application of Algorithmic Fuzzy Implications on Climatic Data. Proceedings of the International Neural Networks Society, 2020, , 399-409.	0.6	1
79	Epidemics Fuzzy Decision-Making Applications and Fuzzy Genetic Algorithms Efficiency Enhancement. Advances in Experimental Medicine and Biology, 2020, 1194, 73-80.	1.6	1
80	Hybrid Fuzzy Multi-Criteria Analysis for Selecting Discrete Preferable Groundwater Recharge Sites. Water (Switzerland), 2022, 14, 107.	2.7	1
81	A topological lattice on the set of multifunctions. International Journal of Mathematics and Mathematical Sciences, 1989, 12, 665-668.	0.7	0
82	THE INDUCED H-STRUCTURE ON FUNCTION SPACES. Quaestiones Mathematicae, 1989, 12, 359-374.	0.6	0
83	Preface for the Session "Fuzzy Logic with Engineering Applications― AIP Conference Proceedings, 2018, , .	0.4	0
84	A generalized method for fuzzy implication selection. AIP Conference Proceedings, 2018, , .	0.4	0
85	Application of fuzzy equivalence relations in clustering of variables that affect the volume of construction activity. AIP Conference Proceedings, 2018 , , .	0.4	0
86	The use of fuzzy sets for the determination of the optimal path between high-traffic locations of the city of Thessaloniki. AIP Conference Proceedings, 2019, , .	0.4	0
87	Determining the optimal path (Travelling Salesman Problem), using fuzzy sets, through 10 nodes in the city of Thessaloniki. AIP Conference Proceedings, 2019, , .	0.4	0
88	Yet another method of generating new implications from a given one implication. AIP Conference Proceedings, $2019, , .$	0.4	0
89	Preservation of the Exchange Principle via Lattice Operations on (S,N)– Implications. IFIP Advances in Information and Communication Technology, 2020, , 167-179.	0.7	0
90	New Construction Machines of Generating Fuzzy Implications. Springer Optimization and Its Applications, 2020, , 441-458.	0.9	0

#	Article	IF	CITATIONS
91	Neuro-Fuzzy Networks and Their Applications in Medical Fields. Advances in Experimental Medicine and Biology, 2020, 1194, 437-437.	1.6	O
92	A Novel Construction Method of (OP) Polynomial and Rational Fuzzy Implications. Journal of Fuzzy Logic and Modeling in Engineering, 2022, 01, .	0.1	0