Emre Firlar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7271853/publications.pdf

Version: 2024-02-01

		686830	676716
37	516	13	22
papers	citations	h-index	g-index
38	38	38	771
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Structural and mechanistic basis of reiterative transcription initiation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	5
2	Colicin E1 opens its hinge to plug TolC. ELife, 2022, 11, .	2.8	11
3	High-Yield Preparation of Outer Membrane Protein Efflux Pumps by in Vitro Refolding is Concentration Dependent. Journal of Membrane Biology, 2021, 254, 41-50.	1.0	6
4	In Situ Liquidâ€Cell TEM Observation of Multiphase Classical and Nonclassical Nucleation of Calcium Oxalate. Advanced Functional Materials, 2021, 31, 2007736.	7.8	19
5	Saturation of thylakoidâ€associated fatty acids facilitates bioenergetic coupling in a marine diatom allowing for thermal acclimation. Global Change Biology, 2021, 27, 3133-3144.	4.2	5
6	Combination targeting of †platelets + fibrin' enhances clot anchorage efficiency of nanoparticles for vascular drug delivery. Nanoscale, 2020, 12, 21255-21270.	2.8	15
7	Structural basis of transcription-translation coupling. Science, 2020, 369, 1359-1365.	6.0	101
8	<p>TEM Studies on Antibacterial Mechanisms of Black Phosphorous Nanosheets</p> . International Journal of Nanomedicine, 2020, Volume 15, 3071-3085.	3.3	28
9	<p>Correlative ex situ and Liquid-Cell TEM Observation of Bacterial Cell Membrane Damage Induced by Rough Surface Topology</p> . International Journal of Nanomedicine, 2020, Volume 15, 1929-1938.	3.3	13
10	On the structure and chemistry of iron oxide cores in human heart and human spleen ferritins using graphene liquid cell electron microscopy. Nanoscale, 2019, 11, 16868-16878.	2.8	18
11	Investigation of the magnetosome biomineralization in magnetotactic bacteria using graphene liquid cell – transmission electron microscopy. Nanoscale, 2019, 11, 698-705.	2.8	29
12	In situ graphene liquid cell-transmission electron microscopy study of insulin secretion in pancreatic islet cells. International Journal of Nanomedicine, 2019, Volume 14, 371-382.	3.3	13
13	Sustained micellar delivery via inducible transitions in nanostructure morphology. Nature Communications, 2018, 9, 624.	5.8	76
14	Investigation of the Magnetosome Biomineralization in Magnetotactic Bacteria Using GLC-TEM. Microscopy and Microanalysis, 2018, 24, 1330-1331.	0.2	О
15	Unveiling the Mechanism of Liposome Formation Using the Graphene Liquid Cells. Microscopy and Microanalysis, 2018, 24, 1784-1785.	0.2	O
16	In situ Encapsulation of E. coli in GLC and Prediction of Beam Induced Death. Microscopy and Microanalysis, 2018, 24, 312-313.	0.2	1
17	In Situ Investigation of Calcium Oxalate Mineralization. Microscopy and Microanalysis, 2018, 24, 1320-1321.	0.2	O
18	Light on the Biomineralization of Ferritin. Microscopy and Microanalysis, 2018, 24, 1324-1325.	0.2	1

#	Article	IF	CITATIONS
19	In Situ Transmission Electron Microscopy Explores a New Nanoscale Pathway for Direct Gypsum Formation in Aqueous Solution. ACS Applied Nano Materials, 2018, 1, 5430-5440.	2.4	22
20	Investigation of In Situ Radiation Effects in Liquid Cell Electron Microscopy. Microscopy and Microanalysis, 2018, 24, 1980-1981.	0.2	0
21	Electron Microscopy and Spectroscopy of Citrate Induced Calcium Oxalate Crystal Structure and Hydration State Changes, and Implications for Kidney Stones. Microscopy and Microanalysis, 2017, 23, 1208-1209.	0.2	1
22	Revealing the Iron Oxides Mineral Core in Ferritin due to the Variations in the H and L Subunits. Microscopy and Microanalysis, 2017, 23, 1184-1185.	0.2	1
23	Monitoring the Exocytosis and Full Fusion of Insulin Granules in Pancreatic Islet Cells via Graphene Liquid Cell-Transmission Electron Microscopy. Microscopy and Microanalysis, 2017, 23, 1310-1311.	0.2	3
24	Synthesis and Characterization of Paramagnetic Iron Nanoparticles with Minimal Gold Coating for Optimal Drug Delivery. Microscopy and Microanalysis, 2016, 22, 1096-1097.	0.2	0
25	Transmission Electron Microscopy Studies of Calcium Phosphate Biomineralization. Microscopy and Microanalysis, 2016, 22, 798-799.	0.2	0
26	Correlative in situ Analysis of Magnetosome Magnetite Biomineralization. Microscopy and Microanalysis, 2016, 22, 12-13.	0.2	0
27	Spatially Resolved Electron Energy Loss Spectroscopy Studies in Graphene Liquid Cell for the Investigation of the Biomineralization Processes in Human Body. Microscopy and Microanalysis, 2016, 22, 806-807.	0.2	0
28	Following iron speciation in the early stages of magnetite magnetosome biomineralization. Journal of Materials Research, 2016, 31, 547-555.	1.2	14
29	Elucidation of Structure and Chemistry of Iron Core in Human Heart Ferritin via Graphene Liquid Cell. Microscopy and Microanalysis, 2016, 22, 800-801.	0.2	1
30	New Approach to Analysis of Noisy EELS Data. Microscopy and Microanalysis, 2015, 21, 1593-1594.	0.2	0
31	Correlative Electron and Fluorescence Microscopy of Magnetotactic Bacteria in Liquid: Toward In Vivo Imaging. Microscopy and Microanalysis, 2015, 21, 1499-1500.	0.2	1
32	Corneodesmosomal Water Content in Frozen-Hydrated Porcine Skin. Journal of Investigative Dermatology, 2015, 135, 1689-1691.	0.3	0
33	Field-assisted self-assembly process: general discussion. Faraday Discussions, 2015, 181, 463-479.	1.6	1
34	Correlative Electron and Fluorescence Microscopy of Magnetotactic Bacteria in Liquid: Toward In Vivo Imaging. Scientific Reports, 2014, 4, 6854.	1.6	65
35	Surface-patterned microgel-tethered molecular beacons. Soft Matter, 2012, 8, 3067.	1.2	19
36	Quantitative nanoscale water mapping in frozen-hydrated skin by low-loss electron energy-loss spectroscopy. Ultramicroscopy, 2010, 110, 866-876.	0.8	33

#	Article	IF	CITATIONS
37	Strength of short fiber reinforced polymers: Effect of fiber length distribution. Polymer Composites, 2008, 29, 644-648.	2.3	14