Jun-Wei Fu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7271628/publications.pdf Version: 2024-02-01

ΙΠΝΑΥΕΓΕΠ

#	Article	IF	CITATIONS
1	Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Applied Catalysis B: Environmental, 2019, 243, 556-565.	20.2	1,895
2	g ₃ N ₄ â€Based Heterostructured Photocatalysts. Advanced Energy Materials, 2018, 8, 1701503.	19.5	1,870
3	Hierarchical Porous Oâ€Doped gâ€C ₃ N ₄ with Enhanced Photocatalytic CO ₂ Reduction Activity. Small, 2017, 13, 1603938.	10.0	1,025
4	Product selectivity of photocatalytic CO2 reduction reactions. Materials Today, 2020, 32, 222-243.	14.2	719
5	Self-assembled hierarchical direct Z-scheme g-C3N4/ZnO microspheres with enhanced photocatalytic CO2 reduction performance. Applied Surface Science, 2018, 441, 12-22.	6.1	364
6	Iron phthalocyanine with coordination induced electronic localization to boost oxygen reduction reaction. Nature Communications, 2020, 11, 4173.	12.8	358
7	Graphitic Carbon Nitride with Dopant Induced Charge Localization for Enhanced Photoreduction of CO ₂ to CH ₄ . Advanced Science, 2019, 6, 1900796.	11.2	251
8	Insights into the activity of single-atom Fe-N-C catalysts for oxygen reduction reaction. Nature Communications, 2022, 13, 2075.	12.8	197
9	Chemical Identification of Catalytically Active Sites on Oxygenâ€doped Carbon Nanosheet to Decipher the High Activity for Electroâ€synthesis Hydrogen Peroxide. Angewandte Chemie - International Edition, 2021, 60, 16607-16614.	13.8	150
10	Accelerating CO ₂ Electroreduction to Multicarbon Products via Synergistic Electric–Thermal Field on Copper Nanoneedles. Journal of the American Chemical Society, 2022, 144, 3039-3049.	13.7	147
11	Unveiling the Protonâ€Feeding Effect in Sulfurâ€Doped Feâ^'Nâ^'C Singleâ€Atom Catalyst for Enhanced CO ₂ Electroreduction. Angewandte Chemie - International Edition, 2022, 61, .	13.8	126
12	Tuning Charge Distribution of FeN ₄ via External N for Enhanced Oxygen Reduction Reaction. ACS Catalysis, 2021, 11, 6304-6315.	11.2	114
13	Single-atom transition metals supported on black phosphorene for electrochemical nitrogen reduction. Nanoscale, 2020, 12, 4903-4908.	5.6	107
14	Atomically Dispersed sâ€Block Magnesium Sites for Electroreduction of CO ₂ to CO. Angewandte Chemie - International Edition, 2021, 60, 25241-25245.	13.8	104
15	Optimizing Hydrogen Binding on Ru Sites with RuCo Alloy Nanosheets for Efficient Alkaline Hydrogen Evolution. Angewandte Chemie - International Edition, 2022, 61, e202113664.	13.8	102
16	Vertical Cu Nanoneedle Arrays Enhance the Local Electric Field Promoting C ₂ Hydrocarbons in the CO ₂ Electroreduction. Nano Letters, 2022, 22, 1963-1970.	9.1	95
17	Paired Ru‒O‒Mo ensemble for efficient and stable alkaline hydrogen evolution reaction. Nano Energy, 2021, 82, 105767.	16.0	86
18	Ligand Engineering in Nickel Phthalocyanine to Boost the Electrocatalytic Reduction of CO ₂ . Advanced Functional Materials, 2022, 32, .	14.9	80

Jun-Wei Fu

#	Article	IF	CITATIONS
19	Enhancing CO ₂ reduction by suppressing hydrogen evolution with polytetrafluoroethylene protected copper nanoneedles. Journal of Materials Chemistry A, 2020, 8, 15936-15941.	10.3	78
20	Activation of CO2 on graphitic carbon nitride supported single-atom cobalt sites. Chemical Engineering Journal, 2021, 415, 128982.	12.7	76
21	Graphitic carbon nitride based single-atom photocatalysts. Frontiers of Physics, 2020, 15, 1.	5.0	72
22	Machine Learning in Screening High Performance Electrocatalysts for CO ₂ Reduction. Small Methods, 2021, 5, e2100987.	8.6	60
23	Metallic MoO ₂ â€Modified Graphitic Carbon Nitride Boosting Photocatalytic CO ₂ Reduction via Schottky Junction. Solar Rrl, 2020, 4, 1900416.	5.8	59
24	Recent Advances in Strategies for Improving the Performance of CO ₂ Reduction Reaction on Single Atom Catalysts. Small Science, 2021, 1, 2000028.	9.9	57
25	2021 Roadmap: electrocatalysts for green catalytic processes. JPhys Materials, 2021, 4, 022004.	4.2	57
26	Tuning the intermediate reaction barriers by a CuPd catalyst to improve the selectivity of CO2 electroreduction to C2 products. Chinese Journal of Catalysis, 2021, 42, 1500-1508.	14.0	56
27	Nickel polyphthalocyanine with electronic localization at the nickel site for enhanced CO2 reduction reaction. Applied Catalysis B: Environmental, 2022, 306, 121093.	20.2	53
28	Recent advances in the utilization of copper sulfide compounds for electrochemical CO2 reduction. Nano Materials Science, 2020, 2, 235-247.	8.8	45
29	Tracking dynamic evolution of catalytic active sites in photocatalytic CO2 reduction by in situ time-resolved spectroscopy. Rare Metals, 2020, 39, 607-609.	7.1	39
30	Tuning the electron structure enables the NiZn alloy for CO2 electroreduction to formate. Journal of Energy Chemistry, 2021, 63, 625-632.	12.9	38
31	CoS ₂ needle arrays induced a local pseudo-acidic environment for alkaline hydrogen evolution. Nanoscale, 2021, 13, 13604-13609.	5.6	37
32	Chemical Identification of Catalytically Active Sites on Oxygenâ€doped Carbon Nanosheet to Decipher the High Activity for Electroâ€synthesis Hydrogen Peroxide. Angewandte Chemie, 2021, 133, 16743-16750.	2.0	34
33	Electric-field promoted C–C coupling over Cu nanoneedles for CO2 electroreduction to C2 products. Chinese Journal of Catalysis, 2022, 43, 519-525.	14.0	34
34	Bimetallic atomic site catalysts for CO2 reduction reactions: a review. Environmental Chemistry Letters, 2022, 20, 243-262.	16.2	31
35	Tandem catalysis on adjacent active motifs of copper grain boundary for efficient CO2 electroreduction toward C2 products. Journal of Energy Chemistry, 2022, 70, 219-223.	12.9	29
36	Recent advances in different-dimension electrocatalysts for carbon dioxide reduction. Journal of Colloid and Interface Science, 2019, 550, 17-47.	9.4	26

Jun-Wei Fu

#	Article	IF	CITATIONS
37	Optimizing Hydrogen Binding on Ru Sites with RuCo Alloy Nanosheets for Efficient Alkaline Hydrogen Evolution. Angewandte Chemie, 2022, 134, .	2.0	24
38	Intermediate enrichment effect of porous Cu catalyst for CO2 electroreduction to C2 fuels. Electrochimica Acta, 2021, 388, 138552.	5.2	22
39	Atomically Dispersed sâ€Block Magnesium Sites for Electroreduction of CO ₂ to CO. Angewandte Chemie, 2021, 133, 25445-25449.	2.0	22
40	High-performance alkaline water splitting by Ni nanoparticle-decorated Mo-Ni microrods: Enhanced ion adsorption by the local electric field. Chemical Engineering Journal, 2022, 435, 134860.	12.7	20
41	Cu-based bimetallic catalysts for CO2 reduction reaction. , 2022, 1, 100023.		20
42	Pseudo-copper Ni-Zn alloy catalysts for carbon dioxide reduction to C2 products. Frontiers of Physics, 2021, 16, 1.	5.0	19
43	CO2 reduction reaction pathways on single-atom Co sites: Impacts of local coordination environment. Chinese Journal of Catalysis, 2022, 43, 832-838.	14.0	18
44	Hydroxyl radical induced from hydrogen peroxide by cobalt manganese oxides for ciprofloxacin degradation. Chinese Chemical Letters, 2022, 33, 5208-5212.	9.0	17
45	Regulating local charges of atomically dispersed Mo+ sites by nitrogen coordination on cobalt nanosheets to trigger water dissociation for boosted hydrogen evolution in alkaline media. Journal of Energy Chemistry, 2022, 72, 125-132.	12.9	17
46	Vertical SrNbO ₂ N Nanorod Arrays for Solarâ€Driven Photoelectrochemical Water Splitting. Solar Rrl, 2021, 5, 2000448.	5.8	10
47	Enhanced Selective Photooxidation of Toluene to Benzaldehyde over Co ₃ O ₄ â€Modified BiOBr/AgBr Sâ€Scheme Heterojunction. Solar Rrl, 2022, 6, .	5.8	7
48	Unveiling the Protonâ€Feeding Effect in Sulfurâ€Doped Feâ^'Nâ^'C Singleâ€Atom Catalyst for Enhanced CO ₂ Electroreduction. Angewandte Chemie, 2022, 134, .	2.0	7
49	Identification of the active site during CF ₄ hydrolytic decomposition over γ-Al ₂ O ₃ . Environmental Science: Nano, 2022, 9, 954-963.	4.3	6