
Ashay D Bhatwadekar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7271569/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Restructuring of the Gut Microbiome by Intermittent Fasting Prevents Retinopathy and Prolongs Survival in <i>db/db</i> Mice. Diabetes, 2018, 67, 1867-1879.	0.3	243
2	Diabetic retinopathy is associated with bone marrow neuropathy and a depressed peripheral clock. Journal of Experimental Medicine, 2009, 206, 2897-2906.	4.2	219
3	Activation of the ACE2/Angiotensin-(1–7)/Mas Receptor Axis Enhances the Reparative Function of Dysfunctional Diabetic Endothelial Progenitors. Diabetes, 2013, 62, 1258-1269.	0.3	91
4	Liver X Receptor Modulates Diabetic Retinopathy Outcome in a Mouse Model of Streptozotocin-Induced Diabetes. Diabetes, 2012, 61, 3270-3279.	0.3	62
5	<i>Per2</i> Mutation Recapitulates the Vascular Phenotype of Diabetes in the Retina and Bone Marrow. Diabetes, 2013, 62, 273-282.	0.3	61
6	Advanced Glycation of Fibronectin Impairs Vascular Repair by Endothelial Progenitor Cells: Implications for Vasodegeneration in Diabetic Retinopathy. , 2008, 49, 1232.		58
7	CNS Inflammation and Bone Marrow Neuropathy in Type 1 Diabetes. American Journal of Pathology, 2013, 183, 1608-1620.	1.9	53
8	Bone marrow-CNS connections: Implications in the pathogenesis of diabetic retinopathy. Progress in Retinal and Eye Research, 2012, 31, 481-494.	7.3	50
9	Diabetic Retinopathy in the Aging Population: A Perspective of Pathogenesis and Treatment. Clinical Interventions in Aging, 2021, Volume 16, 1367-1378.	1.3	39
10	Transient Inhibition of Transforming Growth Factor-β1 in Human Diabetic CD34+ Cells Enhances Vascular Reparative Functions. Diabetes, 2010, 59, 2010-2019.	0.3	35
11	Conditional Deletion of Bmal1 Accentuates Microvascular and Macrovascular Injury. American Journal of Pathology, 2017, 187, 1426-1435.	1.9	34
12	Anti-integrin therapy for retinovascular diseases. Expert Opinion on Investigational Drugs, 2020, 29, 935-945.	1.9	32
13	miR-92a Corrects CD34+ Cell Dysfunction in Diabetes by Modulating Core Circadian Genes Involved in Progenitor Differentiation. Diabetes, 2015, 64, 4226-4237.	0.3	27
14	Genetics of Diabetic Retinopathy, a Leading Cause of Irreversible Blindness in the Industrialized World. Genes, 2021, 12, 1200.	1.0	25
15	Metformin Corrects Abnormal Circadian Rhythm and Kir4.1 Channels in Diabetes. , 2020, 61, 46.		23
16	Hematopoietic stem/progenitor involvement in retinal microvascular repair during diabetes: Implications for bone marrow rejuvenation. Vision Research, 2017, 139, 211-220.	0.7	21
17	Retinal Endothelial Cell Apoptosis Stimulates Recruitment of Endothelial Progenitor Cells. , 2009, 50, 4967.		20
18	Advanced glycation end (AGE) product modification of laminin downregulates Kir4.1 in retinal Müller cells. PLoS ONE, 2018, 13, e0193280.	1.1	17

Ashay D Bhatwadekar

#	Article	IF	CITATIONS
19	Investigational plasma kallikrein inhibitors for the treatment of diabetic macular edema: an expert assessment. Expert Opinion on Investigational Drugs, 2020, 29, 237-244.	1.9	17
20	Advanced glycation of the Arg-Gly-Asp (RGD) tripeptide motif modulates retinal microvascular endothelial cell dysfunction. Molecular Vision, 2009, 15, 1509-20.	1.1	17
21	Tumor Necrosis Factor Alpha (TNF-α) Disrupts Kir4.1 Channel Expression Resulting in Müller Cell Dysfunction in the Retina. , 2017, 58, 2473.		16
22	RNA therapeutics for retinal diseases. Expert Opinion on Biological Therapy, 2021, 21, 603-613.	1.4	15
23	Per2-Mediated Vascular Dysfunction Is Caused by the Upregulation of the Connective Tissue Growth Factor (CTGF). PLoS ONE, 2016, 11, e0163367.	1.1	12
24	Ataxia Telangiectasia Mutated Dysregulation Results in Diabetic Retinopathy. Stem Cells, 2016, 34, 405-417.	1.4	12
25	The Diurnal Rhythm of Insulin Receptor Substrate-1 (IRS-1) and Kir4.1 in Diabetes: Implications for a Clock Gene Bmal1. , 2019, 60, 1928.		12
26	Enhancing the Function of CD34+ Cells by Targeting Plasminogen Activator Inhibitor-1. PLoS ONE, 2013, 8, e79067.	1.1	12
27	Promise of endothelial progenitor cell for treatment of diabetic retinopathy. Expert Review of Endocrinology and Metabolism, 2010, 5, 29-37.	1.2	8
28	Circadian rhythms in diabetic retinopathy: an overview of pathogenesis and investigational drugs. Expert Opinion on Investigational Drugs, 2020, 29, 1431-1442.	1.9	8
29	AGE and RAGE inhibitors in the treatment of diabetic retinopathy. Expert Review of Ophthalmology, 2007, 2, 105-120.	0.3	7
30	Effect of the pharmacist-managed cardiovascular risk reduction services on diabetic retinopathy outcome measures. Pharmacy Practice, 2019, 17, 1319.	0.8	6
31	Differential Expression of Transforming Growth Factor Beta Receptor 2 (TGFβR2) In Diabetic CD34+ Cells: Implications for Vascular Repair. Blood, 2010, 116, 4795-4795.	0.6	4
32	Retinal Phenotyping of Ferrochelatase Mutant Mice Reveals Protoporphyrin Accumulation and Reduced Neovascular Response. , 2021, 62, 36.		3
33	Diabetes Alters Diurnal Rhythm of Electroretinogram in db/db Mice. Yale Journal of Biology and Medicine, 2019, 92, 155-167.	0.2	3
34	Dapagliflozin protects neural and vascular dysfunction of the retina in diabetes. BMJ Open Diabetes Research and Care, 2022, 10, e002801.	1.2	3
35	Inhibition of Plasminogen Activator Inhibitor (PAI)-1 Corrects Diabetic CD34+ Dysfunction Blood, 2010, 116, 1601-1601.	0.6	1
36	Circadian rhythm disruption results in visual dysfunction. FASEB BioAdvances, 2022, 4, 364-378.	1.3	1

#	Article	IF	CITATIONS
37	Hypermethylation of miRNA-17-92 cluster in peripheral blood mononuclear cells in diabetic retinopathy. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 2022, 16, 102390.	1.8	0