Sandra Rebouissou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7270721/publications.pdf

Version: 2024-02-01

48 papers

9,002 citations

35 h-index 205818 48 g-index

50 all docs 50 docs citations

50 times ranked

10758 citing authors

#	Article	IF	CITATIONS
1	Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nature Genetics, 2015, 47, 505-511.	9.4	1,372
2	Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology, 2007, 45, 42-52.	3.6	1,034
3	Genotype–phenotype correlation in hepatocellular adenoma: New classification and relationship with HCC. Hepatology, 2006, 43, 515-524.	3.6	733
4	MicroRNA profiling in hepatocellular tumors is associated with clinical features and oncogene/tumor suppressor gene mutations. Hepatology, 2008, 47, 1955-1963.	3 . 6	634
5	Hepatocellular adenoma subtype classification using molecular markers and immunohistochemistry. Hepatology, 2007, 46, 740-748.	3.6	554
6	Frequent in-frame somatic deletions activate gp130 in inflammatory hepatocellular tumours. Nature, 2009, 457, 200-204.	13.7	437
7	Advances in molecular classification and precision oncology in hepatocellular carcinoma. Journal of Hepatology, 2020, 72, 215-229.	1.8	311
8	EGFR as a potential therapeutic target for a subset of muscle-invasive bladder cancers presenting a basal-like phenotype. Science Translational Medicine, 2014, 6, 244ra91.	5.8	304
9	A Hepatocellular Carcinoma 5-Gene Score Associated With Survival of Patients After Liver Resection. Gastroenterology, 2013, 145, 176-187.	0.6	302
10	Molecular Classification of Hepatocellular Adenoma AssociatesÂWith Risk Factors, Bleeding, and Malignant Transformation. Gastroenterology, 2017, 152, 880-894.e6.	0.6	290
11	Molecular pathogenesis of focal nodular hyperplasia and hepatocellular adenoma. Journal of Hepatology, 2008, 48, 163-170.	1.8	235
12	Genotypeâ€phenotype correlation of CTNNB1 mutations reveals different ßâ€catenin activity associated with liver tumor progression. Hepatology, 2016, 64, 2047-2061.	3.6	222
13	Clinical, Morphologic, and Molecular Features Defining So-Called Telangiectatic Focal Nodular Hyperplasias of the Liver. Gastroenterology, 2005, 128, 1211-1218.	0.6	207
14	Independent Component Analysis Uncovers the Landscape of the Bladder Tumor Transcriptome and Reveals Insights into Luminal and Basal Subtypes. Cell Reports, 2014, 9, 1235-1245.	2.9	181
15	The role of telomeres and telomerase in cirrhosis and liver cancer. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 544-558.	8.2	154
16	Molecular characterization of hepatocellular adenomas developed in patients with glycogen storage disease type I. Journal of Hepatology, 2013, 58, 350-357.	1.8	146
17	Analysis of Liver Cancer Cell Lines Identifies Agents With Likely Efficacy Against Hepatocellular Carcinoma and Markers of Response. Gastroenterology, 2019, 157, 760-776.	0.6	141
18	Clinical Impact of Genomic Diversity From Early to Advanced Hepatocellular Carcinoma. Hepatology, 2020, 71, 164-182.	3.6	129

#	Article	IF	CITATIONS
19	Clinical and molecular analysis of combined hepatocellular-cholangiocarcinomas. Journal of Hepatology, 2004, 41, 292-298.	1.8	126
20	HNF1α Inactivation Promotes Lipogenesis in Human Hepatocellular Adenoma Independently of SREBP-1 and Carbohydrate-response Element-binding Protein (ChREBP) Activation. Journal of Biological Chemistry, 2007, 282, 14437-14446.	1.6	123
21	Germline hepatocyte nuclear factor $1\hat{l}^{\pm}$ and $1\hat{l}^2$ mutations in renal cell carcinomas. Human Molecular Genetics, 2005, 14, 603-614.	1.4	109
22	A Modeling Approach to Explain Mutually Exclusive and Co-Occurring Genetic Alterations in Bladder Tumorigenesis. Cancer Research, 2015, 75, 4042-4052.	0.4	96
23	Inhibiting Glutamine-Dependent mTORC1 Activation Ameliorates Liver Cancers Driven by \hat{I}^2 -Catenin Mutations. Cell Metabolism, 2019, 29, 1135-1150.e6.	7.2	92
24	Childhood leukaemia, polymorphisms of metabolism enzyme genes, and interactions with maternal tobacco, coffee and alcohol consumption during pregnancy. European Journal of Cancer Prevention, 2005, 14, 531-540.	0.6	91
25	<i>CDKN2A</i> homozygous deletion is associated with muscle invasion in <i>FGFR3</i> â€mutated urothelial bladder carcinoma. Journal of Pathology, 2012, 227, 315-324.	2.1	90
26	Genotype phenotype classification of hepatocellular adenoma. World Journal of Gastroenterology, 2007, 13, 2649.	1.4	90
27	The β-catenin pathway is activated in focal nodular hyperplasia but not in cirrhotic FNH-like nodules. Journal of Hepatology, 2008, 49, 61-71.	1.8	87
28	Dual Targeting of Histone Methyltransferase G9a and DNAâ€Methyltransferase 1 for the Treatment of Experimental Hepatocellular Carcinoma. Hepatology, 2019, 69, 587-603.	3.6	81
29	PI3K/AKT pathway activation in bladder carcinogenesis. International Journal of Cancer, 2014, 134, 1776-1784.	2.3	74
30	Loss of hepatocyte nuclear factor $1\hat{1}$ function in human hepatocellular adenomas leads to aberrant activation of signaling pathways involved in tumorigenesis. Hepatology, 2010, 51, 557-566.	3.6	66
31	Proliferation Markers Are Associated with MET Expression in Hepatocellular Carcinoma and Predict Tivantinib Sensitivity <i>In Vitro</i> . Clinical Cancer Research, 2017, 23, 4364-4375.	3.2	57
32	Telomere length is key to hepatocellular carcinoma diversity and telomerase addiction is an actionable therapeutic target. Journal of Hepatology, 2021, 74, 1155-1166.	1.8	54
33	Recurrent activating mutations of PPAR \hat{I}^3 associated with luminal bladder tumors. Nature Communications, 2019, 10, 253.	5.8	44
34	Argininosuccinate synthase 1 and periportal gene expression in sonic hedgehog hepatocellular adenomas. Hepatology, 2018, 68, 964-976.	3.6	43
35	Integrated Genomic Analysis Identifies Driver Genes and Cisplatin-Resistant Progenitor Phenotype in Pediatric Liver Cancer. Cancer Discovery, 2021, 11, 2524-2543.	7.7	41
36	Note of caution: Contaminations of hepatocellular cell lines. Journal of Hepatology, 2017, 67, 896-897.	1.8	37

#	Article	IF	CITATIONS
37	Common genetic variation in alcohol-related hepatocellular carcinoma: a case-control genome-wide association study. Lancet Oncology, The, 2022, 23, 161-171.	5.1	36
38	${\rm HNF1\^{l}\pm}$ inhibition triggers epithelial-mesenchymal transition in human liver cancer cell lines. BMC Cancer, 2011, 11, 427.	1.1	35
39	Mutation of TP53 gene is involved in carcinogenesis of hepatic undifferentiated (embryonal) sarcoma of the adult, in contrast with Wnt or telomerase pathways: an immunohistochemical study of three cases with genomic relation in two cases. Journal of Hepatology, 2005, 42, 424-429.	1.8	32
40	<i>APC</i> germline hepatoblastomas demonstrate cisplatin-induced intratumor tertiary lymphoid structures. Oncolmmunology, 2019, 8, e1583547.	2.1	31
41	Mutation of TCF1 encoding hepatocyte nuclear factor 1α in gynecological cancer. Oncogene, 2004, 23, 7588-7592.	2.6	21
42	NRF2/KEAP1 and Wnt/β atenin in the multistep process of liver carcinogenesis in humans and rats. Hepatology, 2015, 62, 677-679.	3.6	20
43	Recurrent chromosomal rearrangements of <i>ROS1</i> , <i>FRK</i> and <i>IL6</i> activating JAK/STAT pathway in inflammatory hepatocellular adenomas. Gut, 2020, 69, 1667-1676.	6.1	17
44	A phosphokinomeâ€based screen uncovers new drug synergies for cancer driven by liverâ€specific gain of nononcogenic receptor tyrosine kinases. Hepatology, 2017, 66, 1644-1661.	3.6	15
45	Sigma 1 Receptor is Overexpressed in Hepatocellular Adenoma: Involvement of ERα and HNF1α. Cancers, 2020, 12, 2213.	1.7	4
46	Identification of targeted therapy for an aggressive subgroup of muscle-invasive bladder cancers. Molecular and Cellular Oncology, 2015, 2, e999507.	0.3	1
47	Reply. Hepatology, 2017, 66, 2093-2094.	3.6	1
48	Abstract 2973: Exome sequencing of 243 liver tumors identifies new mutational signatures and potential therapeutic targets. , 2015 , , .		0