## Samar S Ayache

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7270703/publications.pdf Version: 2024-02-01



SAMAD S AVACHE

| #  | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clinical Neurophysiology, 2014, 125, 2150-2206.                                                              | 1.5  | 1,647     |
| 2  | Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS).<br>Clinical Neurophysiology, 2017, 128, 56-92.                                                                    | 1.5  | 1,213     |
| 3  | Clinical Characteristics and Outcomes in Patients With Coronavirus Disease 2019 and Multiple<br>Sclerosis. JAMA Neurology, 2020, 77, 1079.                                                                            | 9.0  | 357       |
| 4  | Comparison of "standard―and "navigated―procedures of TMS coil positioning over motor, premotor<br>and prefrontal targets in patients with chronic pain and depression. Neurophysiologie Clinique, 2010,<br>40, 27-36. | 2.2  | 174       |
| 5  | Transcranial magnetic stimulation of the brain. Pain, 2015, 156, 1601-1614.                                                                                                                                           | 4.2  | 125       |
| 6  | Definition of DLPFC and M1 according to anatomical landmarks for navigated brain stimulation:<br>Inter-rater reliability, accuracy, and influence of gender and age. NeuroImage, 2013, 78, 224-232.                   | 4.2  | 119       |
| 7  | Fatigue in multiple sclerosis – Insights into evaluation and management. Neurophysiologie Clinique, 2017, 47, 139-171.                                                                                                | 2.2  | 118       |
| 8  | Prefrontal tDCS Decreases Pain in Patients with Multiple Sclerosis. Frontiers in Neuroscience, 2016, 10, 147.                                                                                                         | 2.8  | 106       |
| 9  | Fatigue in Multiple Sclerosis: Neural Correlates and the Role of Non-Invasive Brain Stimulation.<br>Frontiers in Cellular Neuroscience, 2015, 9, 460.                                                                 | 3.7  | 103       |
| 10 | Analgesic effects of repetitive transcranial magnetic stimulation of the motor cortex in neuropathic pain: Influence of theta burst stimulation priming. European Journal of Pain, 2012, 16, 1403-1413.               | 2.8  | 95        |
| 11 | Long-term safety and efficacy of patisiran for hereditary transthyretin-mediated amyloidosis with<br>polyneuropathy: 12-month results of an open-label extension study. Lancet Neurology, The, 2021, 20,<br>49-59.    | 10.2 | 93        |
| 12 | DMTs and Covidâ€19 severity in MS: a pooled analysis from Italy and France. Annals of Clinical and Translational Neurology, 2021, 8, 1738-1744.                                                                       | 3.7  | 86        |
| 13 | Effects of left DLPFC versus right PPC tDCS on multiple sclerosis fatigue. Journal of the Neurological<br>Sciences, 2017, 372, 131-137.                                                                               | 0.6  | 76        |
| 14 | Long-term treatment of transthyretin familial amyloid polyneuropathy with tafamidis: a clinical and neurophysiological study. Journal of Neurology, 2017, 264, 268-276.                                               | 3.6  | 76        |
| 15 | Repetitive transcranial magnetic stimulation and transcranial direct-current stimulation in neuropathic pain due to radiculopathy. Pain, 2016, 157, 1224-1231.                                                        | 4.2  | 74        |
| 16 | Non-invasive Brain Stimulation Therapy in Multiple Sclerosis: AÂReview of tDCS, rTMS and ECT Results.<br>Brain Stimulation, 2014, 7, 849-854.                                                                         | 1.6  | 60        |
| 17 | Repetitive transcranial magnetic stimulation for neuropathic pain: a randomized multicentre sham-controlled trial. Brain, 2021, 144, 3328-3339.                                                                       | 7.6  | 59        |
| 18 | Deficits in Social Cognition: An Unveiled Signature of Multiple Sclerosis. Journal of the International<br>Neuropsychological Society, 2017, 23, 266-286.                                                             | 1.8  | 57        |

| #  | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The Hand Motor Hotspot is not Always Located in the Hand Knob: A Neuronavigated Transcranial<br>Magnetic Stimulation Study. Brain Topography, 2016, 29, 590-597.                                                    | 1.8 | 56        |
| 20 | Stroke rehabilitation using noninvasive cortical stimulation: motor deficit. Expert Review of Neurotherapeutics, 2012, 12, 949-972.                                                                                 | 2.8 | 55        |
| 21 | Analgesic effects of navigated motor cortex <scp>rTMS</scp> in patients with chronic neuropathic pain. European Journal of Pain, 2016, 20, 1413-1422.                                                               | 2.8 | 51        |
| 22 | Effects of transcranial random noise stimulation (tRNS) on affect, pain and attention in multiple sclerosis. Restorative Neurology and Neuroscience, 2016, 34, 189-199.                                             | 0.7 | 50        |
| 23 | Theory of mind in multiple sclerosis: A neuropsychological and MRI study. Neuroscience Letters, 2017, 658, 108-113.                                                                                                 | 2.1 | 47        |
| 24 | The treatment of fatigue by non-invasive brain stimulation. Neurophysiologie Clinique, 2017, 47, 173-184.                                                                                                           | 2.2 | 46        |
| 25 | A reappraisal of the value of lateral spread response monitoring in the treatment of hemifacial spasm<br>by microvascular decompression. Journal of Neurology, Neurosurgery and Psychiatry, 2009, 80,<br>1375-1380. | 1.9 | 45        |
| 26 | Assessing mNIS+7 <sub>Ionis</sub> and international neurologists' proficiency in a familial amyloidotic polyneuropathy trial. Muscle and Nerve, 2017, 56, 901-911.                                                  | 2.2 | 42        |
| 27 | Pain-related evoked potentials: A comparative study between electrical stimulation using a concentric planar electrode and laser stimulation using a CO2 laser. Neurophysiologie Clinique, 2012, 42, 199-206.       | 2.2 | 38        |
| 28 | Is there a link between inflammation and fatigue in multiple sclerosis?. Journal of Inflammation<br>Research, 2018, Volume 11, 253-264.                                                                             | 3.5 | 38        |
| 29 | Cognitive behavioral therapies and multiple sclerosis fatigue: A review of literature. Journal of<br>Clinical Neuroscience, 2018, 52, 1-4.                                                                          | 1.5 | 37        |
| 30 | High-Frequency Neuronavigated rTMS in Auditory Verbal Hallucinations: A Pilot Double-Blind<br>Controlled Study in Patients With Schizophrenia. Schizophrenia Bulletin, 2018, 44, 505-514.                           | 4.3 | 37        |
| 31 | Neurophysiological, radiological and neuropsychological evaluation of fatigue in multiple sclerosis.<br>Multiple Sclerosis and Related Disorders, 2019, 28, 145-152.                                                | 2.0 | 37        |
| 32 | Alexithymia in multiple sclerosis: A systematic review of literature. Neuropsychologia, 2017, 104, 31-47.                                                                                                           | 1.6 | 36        |
| 33 | Stroke rehabilitation using noninvasive cortical stimulation: aphasia. Expert Review of Neurotherapeutics, 2012, 12, 973-982.                                                                                       | 2.8 | 34        |
| 34 | Psychiatric event in multiple sclerosis: could it be the tip of the iceberg?. Revista Brasileira De<br>Psiquiatria, 2017, 39, 365-368.                                                                              | 1.7 | 34        |
| 35 | Relapses in multiple sclerosis: effects of highâ€dose steroids on cortical excitability. European Journal of Neurology, 2014, 21, 630.                                                                              | 3.3 | 32        |
| 36 | Patisiran treatment in patients with hereditary transthyretin-mediated amyloidosis with polyneuropathy after liver transplantation. American Journal of Transplantation, 2022, 22, 1646-1657.                       | 4.7 | 30        |

| #  | Article                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Noninvasive Brain Stimulation and Psychotherapy in Anxiety and Depressive Disorders: A Viewpoint.<br>Brain Sciences, 2019, 9, 82.                                                           | 2.3 | 28        |
| 38 | Stroke rehabilitation using noninvasive cortical stimulation: hemispatial neglect. Expert Review of Neurotherapeutics, 2012, 12, 983-991.                                                   | 2.8 | 27        |
| 39 | Fatigue and Affective Manifestations in Multiple Sclerosis—A Cluster Approach. Brain Sciences, 2020,<br>10, 10.                                                                             | 2.3 | 26        |
| 40 | Long term effects of prefrontal tDCS on multiple sclerosis fatigue: A case study. Brain Stimulation, 2017, 10, 1001-1002.                                                                   | 1.6 | 25        |
| 41 | Reappraisal of the anatomical landmarks of motor and premotor cortical regions for imageâ€guided<br>brain navigation in TMS practice. Human Brain Mapping, 2014, 35, 2435-2447.             | 3.6 | 24        |
| 42 | Cortical excitability changes over time in progressive multiple sclerosis. Functional Neurology, 2015, 30, 257-63.                                                                          | 1.3 | 24        |
| 43 | Bifrontal transcranial direct current stimulation modulates fatigue in multiple sclerosis: a randomized sham-controlled study. Journal of Neural Transmission, 2020, 127, 953-961.          | 2.8 | 23        |
| 44 | Adenosine Triphosphate Metabolism Measured by Phosphorus Magnetic Resonance Spectroscopy: A<br>Potential Biomarker for Multiple Sclerosis Severity. European Neurology, 2017, 77, 316-321.  | 1.4 | 21        |
| 45 | Transcranial direct current stimulation: A glimmer of hope for multiple sclerosis fatigue?. Journal of<br>Clinical Neuroscience, 2018, 55, 10-12.                                           | 1.5 | 19        |
| 46 | Long-term effects of tDCS on fatigue, mood and cognition in multiple sclerosis. Clinical<br>Neurophysiology, 2017, 128, 2179-2180.                                                          | 1.5 | 17        |
| 47 | Paroxysmal Symptoms in Multiple Sclerosis—A Review of the Literature. Journal of Clinical Medicine,<br>2020, 9, 3100.                                                                       | 2.4 | 17        |
| 48 | Tremor in Multiple Sclerosis—An Overview and Future Perspectives. Brain Sciences, 2020, 10, 722.                                                                                            | 2.3 | 16        |
| 49 | Fatigue in Multiple Sclerosis: A Review of the Exploratory and Therapeutic Potential of Non-Invasive<br>Brain Stimulation. Frontiers in Neurology, 2022, 13, 813965.                        | 2.4 | 16        |
| 50 | Tremor in multiple sclerosis: The intriguing role of the cerebellum. Journal of the Neurological Sciences, 2015, 358, 351-356.                                                              | 0.6 | 15        |
| 51 | Disentangling the Neural Basis of Cognitive Behavioral Therapy in Psychiatric Disorders: A Focus on<br>Depression. Brain Sciences, 2018, 8, 150.                                            | 2.3 | 15        |
| 52 | Orienting network dysfunction in progressive multiple sclerosis. Journal of the Neurological Sciences, 2015, 351, 206-207.                                                                  | 0.6 | 13        |
| 53 | A reappraisal of the mechanisms of action of ketamine to treat complex regional pain syndrome in the light of cortical excitability changes. Clinical Neurophysiology, 2018, 129, 990-1000. | 1.5 | 13        |
| 54 | Cathodal Transcranial Direct Current Stimulation of the Occipital cortex in Episodic Migraine: A<br>Randomized Sham-Controlled Crossover Study. Journal of Clinical Medicine, 2020, 9, 60.  | 2.4 | 13        |

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Analysis of tremor in multiple sclerosis using Hilbert-Huang Transform. Neurophysiologie Clinique,<br>2015, 45, 475-484.                                                                                                        | 2.2 | 12        |
| 56 | Cortical excitability changes: A mirror to the natural history of multiple sclerosis?.<br>Neurophysiologie Clinique, 2017, 47, 221-223.                                                                                         | 2.2 | 12        |
| 57 | The place of transcranial direct current stimulation in the management of multiple sclerosis-related symptoms. Neurodegenerative Disease Management, 2018, 8, 411-422.                                                          | 2.2 | 12        |
| 58 | Transcranial Direct Current Stimulation of the Occipital Cortex in Medication Overuse Headache: A<br>Pilot Randomized Controlled Cross-Over Study. Journal of Clinical Medicine, 2020, 9, 1075.                                 | 2.4 | 12        |
| 59 | Motor neuron disorder with tongue spasms due to pyrethroid insecticide toxicity. Neurology, 2011, 76, 196-197.                                                                                                                  | 1.1 | 10        |
| 60 | Distinction between essential and physiological tremor using Hilbert-Huang transform.<br>Neurophysiologie Clinique, 2014, 44, 203-212.                                                                                          | 2.2 | 10        |
| 61 | Impaired sleep-associated modulation of post-exercise corticomotor depression in multiple sclerosis.<br>Journal of the Neurological Sciences, 2015, 354, 91-96.                                                                 | 0.6 | 10        |
| 62 | Cortical Excitability Measures May Predict Clinical Response to Fampridine in Patients with Multiple<br>Sclerosis and Gait Impairment. Brain Sciences, 2019, 9, 357.                                                            | 2.3 | 10        |
| 63 | Non-invasive Central and Peripheral Stimulation: New Hope for Essential Tremor?. Frontiers in Neuroscience, 2015, 9, 440.                                                                                                       | 2.8 | 9         |
| 64 | A Scope of the Social Brain in Multiple Sclerosis: Insights From Neuroimaging Studies. Cognitive and<br>Behavioral Neurology, 2020, 33, 90-102.                                                                                 | 0.9 | 8         |
| 65 | Deciphering the neural underpinnings of alexithymia in multiple sclerosis. Neuroscience Letters, 2020, 725, 134894.                                                                                                             | 2.1 | 8         |
| 66 | Autoimmune Brainstem Encephalitis: An Illustrative Case and a Review of the Literature. Journal of<br>Clinical Medicine, 2021, 10, 2970.                                                                                        | 2.4 | 8         |
| 67 | The effects of transcranial direct current stimulation on sleep in patients with multiple sclerosis–A<br>pilot study. Neurophysiologie Clinique, 2022, 52, 28-32.                                                               | 2.2 | 8         |
| 68 | A reappraisal of long-latency abdominal muscle reflexes in patients with propriospinal myoclonus.<br>Movement Disorders, 2011, 26, 1759-1762.                                                                                   | 3.9 | 7         |
| 69 | Somatosensory evoked potentials in the assessment of peripheral neuropathies: Commented results of a survey among French-speaking practitioners and recommendations for practice. Neurophysiologie Clinique, 2015, 45, 131-142. | 2.2 | 7         |
| 70 | Longitudinal Extensive Transverse Myelitis in an Immunocompetent Older Individual—A Rare<br>Complication of Varicella-Zoster Virus Reactivation. Medicina (Lithuania), 2019, 55, 201.                                           | 2.0 | 7         |
| 71 | Clinical description of the broad range of neurological presentations of COVID-19: A retrospective case series. Revue Neurologique, 2021, 177, 275-282.                                                                         | 1.5 | 7         |
| 72 | Thalamic stimulation restores defective cerebellocortical inhibition in multiple sclerosis tremor.<br>Movement Disorders, 2009, 24, 467-469.                                                                                    | 3.9 | 6         |

| #  | Article                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Interhermispheric inhibition predicts anxiety levels in multiple sclerosis: A corticospinal excitability study. Brain Research, 2018, 1699, 186-194.                                                                                                                   | 2.2 | 6         |
| 74 | Effects of Transcranial Direct Current Stimulation on Information Processing Speed, Working<br>Memory, Attention, and Social Cognition in Multiple Sclerosis. Frontiers in Neurology, 2020, 11,<br>545377.                                                             | 2.4 | 6         |
| 75 | Transcranial Direct Current Stimulation and Migraine—The Beginning of a Long Journey. Journal of<br>Clinical Medicine, 2020, 9, 1194.                                                                                                                                  | 2.4 | 6         |
| 76 | Case Report: Multimodal Functional and Structural Evaluation Combining Pre-operative nTMS<br>Mapping and Neuroimaging With Intraoperative CT-Scan and Brain Shift Correction for Brain Tumor<br>Surgical Resection. Frontiers in Human Neuroscience, 2021, 15, 646268. | 2.0 | 6         |
| 77 | Distal nerve excitability and conduction studies in a case of rapidly regressive acute motor<br>neuropathy with multiple motor conduction blocks. Journal of the Peripheral Nervous System, 2010,<br>15, 369-372.                                                      | 3.1 | 5         |
| 78 | Ischemic myopathy revealing systemic calciphylaxis. Muscle and Nerve, 2017, 56, 529-533.                                                                                                                                                                               | 2.2 | 5         |
| 79 | The evaluation of depression in multiple sclerosis using the newly proposed Multiple Sclerosis<br>Depression Rating Scale. L'Encephale, 2018, 44, 565-567.                                                                                                             | 0.9 | 5         |
| 80 | Editorial: Corticospinal Excitability in Patients With Multiple Sclerosis. Frontiers in Neurology, 2020, 11, 635612.                                                                                                                                                   | 2.4 | 5         |
| 81 | Neurofeedback therapy for the management of multiple sclerosis symptoms: current knowledge and future perspectives. Journal of Integrative Neuroscience, 2021, 20, 745.                                                                                                | 1.7 | 5         |
| 82 | The value of sensory nerve conduction studies in the diagnosis of Guillain–Barré syndrome. Clinical<br>Neurophysiology, 2021, 132, 1157-1162.                                                                                                                          | 1.5 | 5         |
| 83 | The ulnar ratio as a sensitive and specific marker of acute inflammatory demyelinating polyneuropathy. Clinical Neurophysiology, 2018, 129, 1699-1703.                                                                                                                 | 1.5 | 4         |
| 84 | Coaching of lifestyle recommendations improves sensory neurophysiological parameters in<br>neuropathies related to glycemic disorder or metabolic syndrome. A pilot study. Neurophysiologie<br>Clinique, 2019, 49, 59-67.                                              | 2.2 | 4         |
| 85 | The medial plantar sensory response: A sensitive marker of acute Inflammatory demyelinating polyneuropathy. Clinical Neurophysiology, 2017, 128, 2122-2124.                                                                                                            | 1.5 | 3         |
| 86 | Isolated Mammillary Bodies Damage—An Atypical Presentation of Wernicke Syndrome. Behavioral<br>Sciences (Basel, Switzerland), 2018, 8, 104.                                                                                                                            | 2.1 | 3         |
| 87 | Effects of Transcranial Direct Current Stimulation on Hand Dexterity in Multiple Sclerosis: A Design<br>for a Randomized Controlled Trial. Brain Sciences, 2020, 10, 185.                                                                                              | 2.3 | 3         |
| 88 | Could Transcranial Direct Current Stimulation Join the Therapeutic Armamentarium in Obsessive-Compulsive Disorder?. Brain Sciences, 2020, 10, 125.                                                                                                                     | 2.3 | 3         |
| 89 | Brain Stimulation and Neuroplasticity. Brain Sciences, 2021, 11, 873.                                                                                                                                                                                                  | 2.3 | 3         |
| 90 | Stem Cells Therapy in Multiple Sclerosis - A New Hope for Progressive Forms. Journal of Stem Cells and Regenerative Medicine, 2016, 12, 49-51.                                                                                                                         | 2.2 | 3         |

| #   | Article                                                                                                                                                                       | IF               | CITATIONS    |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|
| 91  | Palatal motor evoked potentials: Description of a new technique. Clinical Neurophysiology, 2014, 125, 1067-1069.                                                              | 1.5              | 2            |
| 92  | Permanent reversal of essential tremor following a frontal lobe stroke. Journal of the Neurological Sciences, 2015, 354, 133-134.                                             | 0.6              | 2            |
| 93  | Moral Judgment: An Overlooked Deficient Domain in Multiple Sclerosis?. Behavioral Sciences (Basel,) Tj ETQq1 I                                                                | l 0.78431<br>2.1 | 4 rgBT /Over |
| 94  | A reappraisal of pain-paired associative stimulation suggesting motor inhibition at spinal level.<br>Neurophysiologie Clinique, 2018, 48, 295-302.                            | 2.2              | 2            |
| 95  | Precise finger somatotopy revealed by focal motor cortex injury. Neurophysiologie Clinique, 2020, 50, 27-31.                                                                  | 2.2              | 2            |
| 96  | Corticospinal inhibition and alexithymia in multiple sclerosis patients–An exploratory study. Multiple<br>Sclerosis and Related Disorders, 2020, 41, 102039.                  | 2.0              | 2            |
| 97  | Phosphorus magnetic resonance spectroscopy and fatigue in multiple sclerosis. Journal of Neural Transmission, 2020, 127, 1177-1183.                                           | 2.8              | 2            |
| 98  | Cognitive fatigability in the healthy brain: Neurophysiological substrates and the use of tDCS. Clinical Neurophysiology, 2021, 132, 1714-1715.                               | 1.5              | 2            |
| 99  | Fatigue in multiple sclerosis: pathophysiology and emergent interventions. Archives Italiennes De<br>Biologie, 2019, 156, 149-152.                                            | 0.4              | 2            |
| 100 | Central and peripheral motor drive to the palatal muscles. Neurophysiologie Clinique, 2016, 46, 63-68.                                                                        | 2.2              | 1            |
| 101 | Navigated rTMS for the Treatment of Pain. , 2017, , 221-231.                                                                                                                  |                  | 1            |
| 102 | Could neurophysiological measures help in understanding alexithymia in multiple sclerosis?.<br>Neurophysiologie Clinique, 2018, 48, 131.                                      | 2.2              | 1            |
| 103 | Gaze holding abnormalities as an inaugural event in multiple sclerosis - A case report. Clinical<br>Neurology and Neurosurgery, 2020, 198, 106136.                            | 1.4              | 1            |
| 104 | Motor preparation impairment in multiple sclerosis: Evidence from the Bereitschaftspotential in simple and complex motor tasks. Neurophysiologie Clinique, 2022, 52, 137-146. | 2.2              | 1            |
| 105 | Toward a better dexterity: Direction for future studies. Clinical Neurophysiology, 2013, 124, 1488-1489.                                                                      | 1.5              | 0            |
| 106 | Action-induced clonus: Underlying mechanisms revisited. Clinical Neurophysiology, 2014, 125, 1496-1498.                                                                       | 1.5              | 0            |
| 107 | Reply. Pain, 2016, 157, 1175-1176.                                                                                                                                            | 4.2              | 0            |
| 108 | A35 TRNS effects on multiple sclerosis symptoms: A randomized double-blind sham-controlled trial.<br>Clinical Neurophysiology, 2017, 128, e191.                               | 1.5              | 0            |

| #   | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | P268 The effects of high-dose steroids on cortical excitability in acute multiple sclerosis relapses.<br>Clinical Neurophysiology, 2017, 128, e264.                                                                 | 1.5 | 0         |
| 110 | Efficacy of high-frequency neuronavigated repetitive TMS in auditory verbal hallucinations: a<br>double-blind controlled study in patients with schizophrenia. European Neuropsychopharmacology,<br>2017, 27, S957. | 0.7 | 0         |
| 111 | tDCS effects on cortical excitability in multiple sclerosis fatigue. Neurophysiologie Clinique, 2018, 48, 128.                                                                                                      | 2.2 | 0         |
| 112 | Corticospinal excitability and psychiatric symptoms in multiple sclerosis. Neurophysiologie Clinique, 2018, 48, 128-129.                                                                                            | 2.2 | 0         |
| 113 | Sleep disorders in multiple sclerosis: present-day knowledge and future perspectives. Sleep Medicine and Disorders: International Journal, 2017, 1, .                                                               | 0.8 | 0         |