
## **Georg Kochs**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7270380/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Comparative Study of Ten Thogotovirus Isolates and Their Distinct <i>In Vivo</i> Characteristics.<br>Journal of Virology, 2022, 96, JVI0155621.                                   | 1.5  | 9         |
| 2  | Antibody escape and global spread of SARS-CoV-2 lineage A.27. Nature Communications, 2022, 13, 1152.                                                                              | 5.8  | 20        |
| 3  | SARS-CoV-2-specific T-cell epitope repertoire in convalescent and mRNA-vaccinated individuals. Nature Microbiology, 2022, 7, 675-679.                                             | 5.9  | 29        |
| 4  | The interferon-inducible GTPase MxB promotes capsid disassembly and genome release of herpesviruses. ELife, 2022, 11, .                                                           | 2.8  | 16        |
| 5  | Systemic and mucosal antibody responses specific to SARS-CoV-2 during mild versus severe COVID-19.<br>Journal of Allergy and Clinical Immunology, 2021, 147, 545-557.e9.          | 1.5  | 316       |
| 6  | Characterization of pre-existing and induced SARS-CoV-2-specific CD8+ T cells. Nature Medicine, 2021, 27, 78-85.                                                                  | 15.2 | 295       |
| 7  | Macrophages and Dendritic Cells Are Not the Major Source of Pro-Inflammatory Cytokines Upon SARS-CoV-2 Infection. Frontiers in Immunology, 2021, 12, 647824.                      | 2.2  | 33        |
| 8  | Prevalence of SARS-CoV-2 Infection in Children and Their Parents in Southwest Germany. JAMA<br>Pediatrics, 2021, 175, 586.                                                        | 3.3  | 124       |
| 9  | Rapid and stable mobilization of CD8+ T cells by SARS-CoV-2 mRNA vaccine. Nature, 2021, 597, 268-273.                                                                             | 13.7 | 279       |
| 10 | Type l interferon receptor-independent interferon- $\hat{l}\pm$ induction upon infection with a variety of negative-strand RNA viruses. Journal of General Virology, 2021, 102, . | 1.3  | 2         |
| 11 | Rare variant <i>MX1</i> alleles increase human susceptibility to zoonotic H7N9 influenza virus.<br>Science, 2021, 373, 918-922.                                                   | 6.0  | 41        |
| 12 | Within-host evolution of SARS-CoV-2 in an immunosuppressed COVID-19 patient as a source of immune escape variants. Nature Communications, 2021, 12, 6405.                         | 5.8  | 128       |
| 13 | Mx genes: host determinants controlling influenza virus infection and trans-species transmission.<br>Human Genetics, 2020, 139, 695-705.                                          | 1.8  | 35        |
| 14 | Comparative host-coronavirus protein interaction networks reveal pan-viral disease mechanisms.<br>Science, 2020, 370, .                                                           | 6.0  | 508       |
| 15 | Pharmacological Inhibition of Acid Sphingomyelinase Prevents Uptake of SARS-CoV-2 by Epithelial<br>Cells. Cell Reports Medicine, 2020, 1, 100142.                                 | 3.3  | 142       |
| 16 | A Genome-Wide CRISPR-Cas9 Screen Reveals the Requirement of Host Cell Sulfation for Schmallenberg<br>Virus Infection. Journal of Virology, 2020, 94, .                            | 1.5  | 18        |
| 17 | Prolonged SARS-CoV-2 shedding and mild course of COVID-19 in a patient after recent heart transplantation. American Journal of Transplantation, 2020, 20, 3239-3245.              | 2.6  | 57        |
| 18 | The Global Phosphorylation Landscape of SARS-CoV-2 Infection. Cell, 2020, 182, 685-712.e19.                                                                                       | 13.5 | 825       |

| #  | Article                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Using a mouse-adapted A/HK/01/68 influenza virus to analyse the impact of NS1 evolution in codons 196 and 231 on viral replication and virulence. Journal of General Virology, 2020, 101, 587-598. | 1.3 | 2         |
| 20 | Tick-transmitted thogotovirus gains high virulence by a single MxA escape mutation in the viral nucleoprotein. PLoS Pathogens, 2020, 16, e1009038.                                                 | 2.1 | 6         |
| 21 | Combinatorial mutagenesis of rapidly evolving residues yields super-restrictor antiviral proteins.<br>PLoS Biology, 2019, 17, e3000181.                                                            | 2.6 | 13        |
| 22 | Mx1 in Hematopoietic Cells Protects against Thogoto Virus Infection. Journal of Virology, 2019, 93, .                                                                                              | 1.5 | 22        |
| 23 | Essential Role of Interferon Response in Containing Human Pathogenic Bourbon Virus. Emerging<br>Infectious Diseases, 2019, 25, 1304-1313.                                                          | 2.0 | 16        |
| 24 | Recombinant IFN-Î <sup>3</sup> from the bank vole Myodes glareolus: a novel tool for research on rodent reservoirs of zoonotic pathogens. Scientific Reports, 2018, 8, 2797.                       | 1.6 | 4         |
| 25 | Effects of allelic variations in the human myxovirus resistance protein A on its antiviral activity.<br>Journal of Biological Chemistry, 2018, 293, 3056-3072.                                     | 1.6 | 18        |
| 26 | Viral targeting of TFIIB impairs de novo polymerase II recruitment and affects antiviral immunity. PLoS<br>Pathogens, 2018, 14, e1006980.                                                          | 2.1 | 13        |
| 27 | Human MxB Protein Is a Pan-herpesvirus Restriction Factor. Journal of Virology, 2018, 92, .                                                                                                        | 1.5 | 83        |
| 28 | Equine MX2 is a restriction factor of equine infectious anemia virus (EIAV). Virology, 2018, 523, 52-63.                                                                                           | 1.1 | 12        |
| 29 | In vivo evasion of MxA by avian influenza viruses requires human signature in the viral nucleoprotein.<br>Journal of Experimental Medicine, 2017, 214, 1239-1248.                                  | 4.2 | 44        |
| 30 | Evolution and Antiviral Specificities of Interferon-Induced Mx Proteins of Bats against Ebola,<br>Influenza, and Other RNA Viruses. Journal of Virology, 2017, 91, .                               | 1.5 | 53        |
| 31 | Conformational dynamics of dynamin-like MxA revealed by single-molecule FRET. Nature<br>Communications, 2017, 8, 15744.                                                                            | 5.8 | 37        |
| 32 | Molecular identification of novel phlebovirus sequences in European ticks. Ticks and Tick-borne<br>Diseases, 2017, 8, 795-798.                                                                     | 1.1 | 11        |
| 33 | RIG-I Activation Protects and Rescues from Lethal Influenza Virus Infection and Bacterial<br>Superinfection. Molecular Therapy, 2017, 25, 2093-2103.                                               | 3.7 | 26        |
| 34 | <i>In Vivo</i> Conditions Enable IFNAR-Independent Type I Interferon Production by Peritoneal CD11b<br><sup>+</sup> Cells upon Thogoto Virus Infection. Journal of Virology, 2016, 90, 9330-9337.  | 1.5 | 10        |
| 35 | Interferon but not MxB inhibits foamy retroviruses. Virology, 2016, 488, 51-60.                                                                                                                    | 1.1 | 23        |
| 36 | Mx GTPases: dynamin-like antiviral machines of innate immunity. Trends in Microbiology, 2015, 23, 154-163.                                                                                         | 3.5 | 378       |

| #  | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Role of Nucleotide Binding and GTPase Domain Dimerization in Dynamin-like Myxovirus Resistance<br>Protein A for GTPase Activation and Antiviral Activity. Journal of Biological Chemistry, 2015, 290,<br>12779-12792. | 1.6  | 48        |
| 38 | The Avian-Origin PB1 Gene Segment Facilitated Replication and Transmissibility of the H3N2/1968<br>Pandemic Influenza Virus. Journal of Virology, 2015, 89, 4170-4179.                                                | 1.5  | 33        |
| 39 | The Nucleoprotein of Newly Emerged H7N9 Influenza A Virus Harbors a Unique Motif Conferring<br>Resistance to Antiviral Human MxA. Journal of Virology, 2015, 89, 2241-2252.                                           | 1.5  | 56        |
| 40 | Structural Requirements for the Antiviral Activity of the Human MxA Protein against Thogoto and<br>Influenza A Virus. Journal of Biological Chemistry, 2014, 289, 6020-6027.                                          | 1.6  | 56        |
| 41 | Comparative Structural and Functional Analysis of Orthomyxovirus Polymerase Cap-Snatching<br>Domains. PLoS ONE, 2014, 9, e84973.                                                                                      | 1.1  | 18        |
| 42 | Pandemic Influenza A Viruses Escape from Restriction by Human MxA through Adaptive Mutations in the Nucleoprotein. PLoS Pathogens, 2013, 9, e1003279.                                                                 | 2.1  | 156       |
| 43 | Emergence of a C-Terminal Seven-Amino-Acid Elongation of NS1 in Around 1950 Conferred a Minor<br>Growth Advantage to Former Seasonal Influenza A Viruses. Journal of Virology, 2013, 87, 11300-11303.                 | 1.5  | 8         |
| 44 | Evolution-Guided Identification of Antiviral Specificity Determinants in the Broadly Acting<br>Interferon-Induced Innate Immunity Factor MxA. Cell Host and Microbe, 2012, 12, 598-604.                               | 5.1  | 144       |
| 45 | Altered receptor specificity and fusion activity of the haemagglutinin contribute to high virulence of<br>a mouse-adapted influenza A virus. Journal of General Virology, 2012, 93, 970-979.                          | 1.3  | 44        |
| 46 | Human MxA Protein: An Interferon-Induced Dynamin-Like GTPase with Broad Antiviral Activity. Journal of Interferon and Cytokine Research, 2011, 31, 79-87.                                                             | 0.5  | 293       |
| 47 | Structure of Myxovirus Resistance Protein A Reveals Intra- and Intermolecular Domain Interactions Required for the Antiviral Function. Immunity, 2011, 35, 514-525.                                                   | 6.6  | 188       |
| 48 | The Viral Nucleoprotein Determines Mx Sensitivity of Influenza A Viruses. Journal of Virology, 2011, 85, 8133-8140.                                                                                                   | 1.5  | 159       |
| 49 | Stalk Domain of the Dynamin-like MxA GTPase Protein Mediates Membrane Binding and Liposome<br>Tubulation via the Unstructured L4 Loop. Journal of Biological Chemistry, 2011, 286, 37858-37865.                       | 1.6  | 61        |
| 50 | Structural basis of oligomerization in the stalk region of dynamin-like MxA. Nature, 2010, 465, 502-506.                                                                                                              | 13.7 | 229       |
| 51 | Temporal and Spatial Resolution of Type I and III Interferon Responses <i>In Vi vo</i> . Journal of Virology, 2010, 84, 8626-8638.                                                                                    | 1.5  | 100       |
| 52 | Thogoto virus ML protein is a potent inhibitor of the interferon regulatory factor-7 transcription factor. Journal of General Virology, 2010, 91, 220-227.                                                            | 1.3  | 18        |
| 53 | Lambda Interferon Renders Epithelial Cells of the Respiratory and Gastrointestinal Tracts Resistant to<br>Viral Infections. Journal of Virology, 2010, 84, 5670-5677.                                                 | 1.5  | 369       |
| 54 | Thogoto Virus Infection Induces Sustained Type I Interferon Responses That Depend on RIG-I-Like<br>Helicase Signaling of Conventional Dendritic Cells. Journal of Virology, 2010, 84, 12344-12350.                    | 1.5  | 19        |

| #  | Article                                                                                                                                                                                                                          | lF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Dynamin-like MxA GTPase: Structural Insights into Oligomerization and Implications for Antiviral<br>Activity. Journal of Biological Chemistry, 2010, 285, 28419-28424.                                                           | 1.6 | 89        |
| 56 | Oseltamivir-Resistant Variants of the 2009 Pandemic H1N1 Influenza A Virus Are Not Attenuated in the<br>Guinea Pig and Ferret Transmission Models. Journal of Virology, 2010, 84, 11219-11226.                                   | 1.5 | 94        |
| 57 | Glycine 184 in Nonstructural Protein NS1 Determines the Virulence of Influenza A Virus Strain PR8 without Affecting the Host Interferon Response. Journal of Virology, 2010, 84, 12761-12770.                                    | 1.5 | 62        |
| 58 | High yields of influenza A virus in Madin-Darby canine kidney cells are promoted by an insufficient<br>interferon-induced antiviral state. Journal of General Virology, 2010, 91, 1754-1763.                                     | 1.3 | 68        |
| 59 | Structure of the MxA stalk elucidates the assembly of ring-like units of an antiviral module. Small GTPases, 2010, 1, 62-64.                                                                                                     | 0.7 | 20        |
| 60 | Mx Proteins. , 2010, , 1855-1864.                                                                                                                                                                                                |     | 0         |
| 61 | Strong interferon-inducing capacity of a highly virulent variant of influenza A virus strain PR8 with deletions in the NS1 gene. Journal of General Virology, 2009, 90, 2990-2994.                                               | 1.3 | 49        |
| 62 | Efficient production of Rift Valley fever virus-like particles: The antiviral protein MxA can inhibit<br>primary transcription of bunyaviruses. Virology, 2009, 385, 400-408.                                                    | 1.1 | 69        |
| 63 | Influenza A Virus Strains Differ in Sensitivity to the Antiviral Action of Mx-GTPase. Journal of Virology, 2008, 82, 3624-3631.                                                                                                  | 1.5 | 123       |
| 64 | Interferon-λ Contributes to Innate Immunity of Mice against Influenza A Virus but Not against<br>Hepatotropic Viruses. PLoS Pathogens, 2008, 4, e1000151.                                                                        | 2.1 | 276       |
| 65 | Asparagine 631 Variants of the Chicken Mx Protein Do Not Inhibit Influenza Virus Replication in<br>Primary Chicken Embryo Fibroblasts or In Vitro Surrogate Assays. Journal of Virology, 2008, 82,<br>7533-7539.                 | 1.5 | 70        |
| 66 | The Interferon Antagonist ML Protein of Thogoto Virus Targets General Transcription Factor IIB.<br>Journal of Virology, 2008, 82, 11446-11453.                                                                                   | 1.5 | 24        |
| 67 | Mx1 Gene Protects Mice Against the Highly Lethal Human H5N1 Influenza Virus. Cell Cycle, 2007, 6, 2417-2421.                                                                                                                     | 1.3 | 54        |
| 68 | Replication fitness determines high virulence of influenza A virus in mice carrying functional Mx1<br>resistance gene. Proceedings of the National Academy of Sciences of the United States of America,<br>2007, 104, 6806-6811. | 3.3 | 178       |
| 69 | Induction of MxA Gene Expression by Influenza A Virus Requires Type I or Type III Interferon Signaling.<br>Journal of Virology, 2007, 81, 7776-7785.                                                                             | 1.5 | 205       |
| 70 | Multiple Anti-Interferon Actions of the Influenza A Virus NS1 Protein. Journal of Virology, 2007, 81,<br>7011-7021.                                                                                                              | 1.5 | 404       |
| 71 | The <i>Mx1</i> Gene Protects Mice against the Pandemic 1918 and Highly Lethal Human H5N1 Influenza<br>Viruses. Journal of Virology, 2007, 81, 10818-10821.                                                                       | 1.5 | 161       |
| 72 | Properties of H7N7 influenza A virus strain SC35M lacking interferon antagonist NS1 in mice and chickens. Journal of General Virology, 2007, 88, 1403-1409.                                                                      | 1.3 | 87        |

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | West Nile virus-induced cytoplasmic membrane structures provide partial protection against the interferon-induced antiviral MxA protein. Journal of General Virology, 2007, 88, 3013-3017.                             | 1.3 | 51        |
| 74 | Interferon, Mx, and viral countermeasures. Cytokine and Growth Factor Reviews, 2007, 18, 425-433.                                                                                                                      | 3.2 | 147       |
| 75 | The interferon response circuit: Induction and suppression by pathogenic viruses. Virology, 2006, 344, 119-130.                                                                                                        | 1.1 | 597       |
| 76 | Rapid and simple detection of IFN-neutralizing antibodies in chronic hepatitis C non-responsive to IFN-α.<br>Journal of Medical Virology, 2006, 78, 74-82.                                                             | 2.5 | 47        |
| 77 | Interferon-Induced, Antiviral Human MxA Protein Localizes to a Distinct Subcompartment of the<br>Smooth Endoplasmic Reticulum. Journal of Interferon and Cytokine Research, 2006, 26, 650-660.                         | 0.5 | 69        |
| 78 | Thogoto virus ML protein suppresses IRF3 function. Virology, 2005, 331, 63-72.                                                                                                                                         | 1.1 | 61        |
| 79 | Assay and Functional Analysis of Dynaminâ€Like Mx Proteins. Methods in Enzymology, 2005, 404, 632-643.                                                                                                                 | 0.4 | 35        |
| 80 | Thogoto Virus Lacking Interferon-Antagonistic Protein ML Is Strongly Attenuated in Newborn Mx1<br>-Positive but Not Mx1 -Negative Mice. Journal of Virology, 2004, 78, 11422-11424.                                    | 1.5 | 23        |
| 81 | Functional comparison of the two gene products of Thogoto virus segment 6. Journal of General<br>Virology, 2004, 85, 3699-3708.                                                                                        | 1.3 | 12        |
| 82 | Missorting of LaCrosse Virus Nucleocapsid Protein by the Interferon-Induced MxA GTPase Involves<br>Smooth ER Membranes. Traffic, 2004, 5, 772-784.                                                                     | 1.3 | 101       |
| 83 | Novel Gene Product of Thogoto Virus Segment 6 Codes for an Interferon Antagonist. Journal of Virology, 2003, 77, 2747-2752.                                                                                            | 1.5 | 43        |
| 84 | Viral Evasion of the Interferon System: Old Viruses, New Tricks. Journal of Interferon and Cytokine<br>Research, 2003, 23, 209-213.                                                                                    | 0.5 | 13        |
| 85 | Antivirally active MxA protein sequesters La Crosse virus nucleocapsid protein into perinuclear<br>complexes. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99,<br>3153-3158. | 3.3 | 191       |
| 86 | Self-assembly of Human MxA GTPase into Highly Ordered Dynamin-like Oligomers. Journal of Biological<br>Chemistry, 2002, 277, 14172-14176.                                                                              | 1.6 | 84        |
| 87 | Interferon-Induced Mx Proteins: Dynamin-Like GTPases with Antiviral Activity. Traffic, 2002, 3, 710-717.                                                                                                               | 1.3 | 393       |
| 88 | Rescue of Recombinant Thogoto Virus from Cloned cDNA. Journal of Virology, 2001, 75, 9282-9286.                                                                                                                        | 1.5 | 29        |
| 89 | MxA GTPase Blocks Reporter Gene Expression of Reconstituted Thogoto Virus Ribonucleoprotein<br>Complexes. Journal of Virology, 2000, 74, 560-563.                                                                      | 1.5 | 49        |
| 90 | Thogoto Virus Matrix Protein Is Encoded by a Spliced mRNA. Journal of Virology, 2000, 74, 10785-10789.                                                                                                                 | 1.5 | 26        |

| #  | Article                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Formation of virus-like particles from cloned cDNAs of Thogoto virus. Journal of General Virology, 2000, 81, 2849-2853.                                                             | 1.3 | 15        |
| 92 | GTP-bound Human MxA Protein Interacts with the Nucleocapsids of Thogoto Virus<br>(Orthomyxoviridae). Journal of Biological Chemistry, 1999, 274, 4370-4376.                         | 1.6 | 92        |
| 93 | The central interactive region of human MxA GTPase is involved in GTPase activation and interaction with viral target structures. FEBS Letters, 1999, 463, 24-28.                   | 1.3 | 128       |
| 94 | A Classical Bipartite Nuclear Localization Signal on Thogoto and Influenza A Virus Nucleoproteins.<br>Virology, 1998, 250, 9-18.                                                    | 1.1 | 102       |
| 95 | In vivo reconstitution of active Thogoto virus polymerase: assays for the compatibility with other orthomyxovirus core proteins and template RNAs. Virus Research, 1998, 58, 13-20. | 1.1 | 23        |
| 96 | The fourth genus in the Orthomyxoviridae: sequence analyses of two Thogoto virus polymerase proteins and comparison with influenza viruses. Virus Research, 1997, 50, 215-224.      | 1.1 | 40        |
| 97 | Mx1 but Not MxA Confers Resistance against Tick-Borne Dhori Virus in Mice. Virology, 1995, 211, 296-301.                                                                            | 1.1 | 43        |