
Margherita Maioli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7270355/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of miRNA-145, 148, and 185 and Stem Cells in Prostate Cancer. International Journal of Molecular Sciences, 2022, 23, 1626.	4.1	16
2	Cytochalasin B Modulates Nanomechanical Patterning and Fate in Human Adipose-Derived Stem Cells. Cells, 2022, 11, 1629.	4.1	9
3	Myrtle-Functionalized Nanofibers Modulate Vaginal Cell Population Behavior While Counteracting Microbial Proliferation. Plants, 2022, 11, 1577.	3.5	1
4	Metformin and vitamin D modulate adipose-derived stem cell differentiation towards the beige phenotype. Adipocyte, 2022, 11, 356-365.	2.8	4
5	Melatonin finely tunes proliferation and senescence in hematopoietic stem cells. European Journal of Cell Biology, 2022, 101, 151251.	3.6	5
6	Role of Nano-miRNAs in Diagnostics and Therapeutics. International Journal of Molecular Sciences, 2022, 23, 6836.	4.1	7
7	miRNAs as Molecular Biomarkers for Prostate Cancer. Journal of Molecular Diagnostics, 2022, 24, 1171-1180.	2.8	5
8	Identifying a Role of Red and White Wine Extracts in Counteracting Skin Aging: Effects of Antioxidants on Fibroblast Behavior. Antioxidants, 2021, 10, 227.	5.1	4
9	Natural Compounds and PCL Nanofibers: A Novel Tool to Counteract Stem Cell Senescence. Cells, 2021, 10, 1415.	4.1	7
10	Nanomaterials in Skin Regeneration and Rejuvenation. International Journal of Molecular Sciences, 2021, 22, 7095.	4.1	35
11	Metformin and Vitamin D Modulate Inflammation and Autophagy during Adipose-Derived Stem Cell Differentiation. International Journal of Molecular Sciences, 2021, 22, 6686.	4.1	11
12	Adipose-Derived Stem Cell Features and MCF-7. Cells, 2021, 10, 1754.	4.1	2
13	REAC Non-invasive Neurobiological Stimulation for Mitigating the Impact of Internalizing Disorders in Autism Spectrum Disorder. Advances in Neurodevelopmental Disorders, 2021, 5, 446.	1.1	8
14	Smart Nanofibers with Natural Extracts Prevent Senescence Patterning in a Dynamic Cell Culture Model of Human Skin. Cells, 2020, 9, 2530.	4.1	10
15	Tuning Adipogenic Differentiation in ADSCs by Metformin and Vitamin D: Involvement of miRNAs. International Journal of Molecular Sciences, 2020, 21, 6181.	4.1	11
16	Behavioral Changes in Stem-Cell Potency by HepG2-Exhausted Medium. Cells, 2020, 9, 1890.	4.1	7
17	Fibroblast Proliferation and Migration in Wound Healing by Phytochemicals: Evidence for a Novel Synergic Outcome. International Journal of Medical Sciences, 2020, 17, 1030-1042.	2.5	94
18	Unravelling Cellular Mechanisms of Stem Cell Senescence: An Aid from Natural Bioactive Molecules. Biology, 2020, 9, 57.	2.8	11

#	Article	IF	CITATIONS
19	Effect of rhTSH on Lipids. Journal of Clinical Medicine, 2020, 9, 515.	2.4	7
20	Direct-to-Consumer Nutrigenetics Testing: An Overview. Nutrients, 2020, 12, 566.	4.1	27
21	Mechanical Stimulation of Fibroblasts by Extracorporeal Shock Waves: Modulation of Cell Activation and Proliferation Through a Transient Proinflammatory Milieu. Cell Transplantation, 2020, 29, 096368972091617.	2.5	15
22	Subclinical hypothyroidism and cardiovascular risk factors. Minerva Medica, 2020, 110, 530-545.	0.9	22
23	Extracts from Myrtle Liqueur Processing Waste Modulate Stem Cells Pluripotency under Stressing Conditions. BioMed Research International, 2019, 2019, 1-12.	1.9	16
24	Epigenetics, Stem Cells, and Autophagy: Exploring a Path Involving miRNA. International Journal of Molecular Sciences, 2019, 20, 5091.	4.1	14
25	Intracrine Endorphinergic Systems in Modulation of Myocardial Differentiation. International Journal of Molecular Sciences, 2019, 20, 5175.	4.1	2
26	Lessons from human umbilical cord: gender differences in stem cells from Wharton's jelly. European Journal of Obstetrics, Gynecology and Reproductive Biology, 2019, 234, 143-148.	1.1	18
27	Physical stimulation by REAC and BMP4/WNT-1 inhibitor synergistically enhance cardiogenic commitment in iPSCs. PLoS ONE, 2019, 14, e0211188.	2.5	8
28	Antimicrobial Effect of Thymus capitatus and Citrus limon var. pompia as Raw Extracts and Nanovesicles. Pharmaceutics, 2019, 11, 234.	4.5	34
29	Myrtus Polyphenols, from Antioxidants to Anti-Inflammatory Molecules: Exploring a Network Involving Cytochromes P450 and Vitamin D. Molecules, 2019, 24, 1515.	3.8	28
30	Total Phenols from Grape Leaves Counteract Cell Proliferation and Modulate Apoptosis-Related Gene Expression in MCF-7 and HepG2 Human Cancer Cell Lines. Molecules, 2019, 24, 612.	3.8	43
31	Orchestrating stem cell fate: Novel tools for regenerative medicine. World Journal of Stem Cells, 2019, 11, 464-475.	2.8	17
32	Comparison of Oxidative Stress Effects on Senescence Patterning of Human Adult and Perinatal Tissue-Derived Stem Cells in Short and Long-term Cultures. International Journal of Medical Sciences, 2018, 15, 1486-1501.	2.5	28
33	Melatonin and Vitamin D Orchestrate Adipose Derived Stem Cell Fate by Modulating Epigenetic Regulatory Genes. International Journal of Medical Sciences, 2018, 15, 1631-1639.	2.5	23
34	Environmental Influences on Stem Cell Behavior. Stem Cells International, 2018, 2018, 1-2.	2.5	1
35	MiR200 and miR302: Two Big Families Influencing Stem Cell Behavior. Molecules, 2018, 23, 282.	3.8	35
36	Radio Electric Asymmetric Conveyer (REAC) technology to obviate loss of T cell responsiveness under simulated microgravity. PLoS ONE, 2018, 13, e0200128.	2.5	5

Margherita Maioli

#	Article	IF	CITATIONS
37	Advances in stem cell therapy for amyotrophic lateral sclerosis. Expert Opinion on Biological Therapy, 2018, 18, 865-881.	3.1	30
38	Synthesis of magnolol and honokiol derivatives and their effect against hepatocarcinoma cells. PLoS ONE, 2018, 13, e0192178.	2.5	32
39	Subclinical hypothyroidism, lipid metabolism and cardiovascular disease. European Journal of Internal Medicine, 2017, 38, 17-24.	2.2	92
40	Melatonin and Vitamin D Interfere with the Adipogenic Fate of Adipose-Derived Stem Cells. International Journal of Molecular Sciences, 2017, 18, 981.	4.1	55
41	Thyroid Hormones, Metabolic Syndrome and Its Components. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2017, 17, 56-62.	1.2	37
42	Osteogenesis from Dental Pulp Derived Stem Cells: A Novel Conditioned Medium Including Melatonin within a Mixture of Hyaluronic, Butyric, and Retinoic Acids. Stem Cells International, 2016, 2016, 1-8.	2.5	34
43	REAC technology and hyaluron synthase 2, an interesting network to slow down stem cell senescence. Scientific Reports, 2016, 6, 28682.	3.3	36
44	Organ-specific antibodies in LADA patients for the prediction of insulin dependence. Endocrine Research, 2016, 41, 207-212.	1.2	17
45	Neurological morphofunctional differentiation induced by REAC technology in PC12. A neuro protective model for Parkinson's disease. Scientific Reports, 2015, 5, 10439.	3.3	41
46	Allelic variant in CTLA4 is associated with thyroid failure and faster β â€cell exhaustion in latent autoimmune diabetes in adults CTLA4 ç‰ä½åŸ°å›å•å¼,ä,Žæˆäº2;Ÿåʿ型自谫åç−«æ€§ç³−å°;ç−æ,£è€çš	š"ç" ¹ 28č¶è.	ºå\$Ÿèf½è;°
47	Anti-senescence efficacy of radio-electric asymmetric conveyer technology. Age, 2014, 36, 9-20.	3.0	36
48	Radioelectric Asymmetric Conveyed Fields and Human Adipose-Derived Stem Cells Obtained with a Nonenzymatic Method and Device: A Novel Approach to Multipotency. Cell Transplantation, 2014, 23, 1489-1500.	2.5	70
49	Physical reparative treatment in reptiles. BMC Veterinary Research, 2013, 9, 39.	1.9	6
50	Activation and function of murine Cyclin T2A and Cyclin T2B during skeletal muscle differentiation. Journal of Cellular Biochemistry, 2013, 114, 728-734.	2.6	8
51	Radio Electric Conveyed Fields Directly Reprogram Human Dermal Skin Fibroblasts toward Cardiac, Neuronal, and Skeletal Muscle-Like Lineages. Cell Transplantation, 2013, 22, 1227-1235.	2.5	66
52	A New Nonenzymatic Method and Device to Obtain a Fat Tissue Derivative Highly Enriched in Pericyte-Like Elements by Mild Mechanical Forces from Human Lipoaspirates. Cell Transplantation, 2013, 22, 2063-2077.	2.5	259
53	Effects of regenerative radioelectric asymmetric conveyer treatment on human normal and osteoarthritic chondrocytes exposed to IL-1β. A biochemical and morphological study. Clinical Interventions in Aging, 2013, 8, 309.	2.9	28
54	Amniotic fluid stem cells morph into a cardiovascular lineage: analysis of a chemically induced cardiac and vascular commitment. Drug Design, Development and Therapy, 2013, 7, 1063.	4.3	31

#	ARTICLE	IF	CITATIONS
55	Radiofrequency Energy Loop Primes Cardiac, Neuronal, and Skeletal Muscle Differentiation in Mouse Embryonic Stem Cells: A New Tool for Improving Tissue Regeneration. Cell Transplantation, 2012, 21, 1225-1233.	2.5	66
56	Regenerative treatment using a radioelectric asymmetric conveyor as a novel tool in antiaging medicine: an in vitro beta-galactosidase study. Clinical Interventions in Aging, 2012, 7, 191.	2.9	36
57	Ferritin as a reporter gene for in vivo tracking of stem cells by 1.5-T cardiac MRI in a rat model of myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H2238-H2250.	3.2	71
58	Hyaluronan Mixed Esters of Butyric and Retinoic Acid Affording Myocardial Survival and Repair without Stem Cell Transplantation. Journal of Biological Chemistry, 2010, 285, 9949-9961.	3.4	58
59	Hyaluronan Esters Drive Smad Gene Expression and Signaling Enhancing Cardiogenesis in Mouse Embryonic and Human Mesenchymal Stem Cells. PLoS ONE, 2010, 5, e15151.	2.5	36
60	Creating prodynorphin-expressing stem cells alerted for a high-throughput of cardiogenic commitment. Regenerative Medicine, 2007, 2, 193-202.	1.7	8
61	Hyaluronan Mixed Esters of Butyric and Retinoic Acid Drive Cardiac and Endothelial Fate in Term Placenta Human Mesenchymal Stem Cells and Enhance Cardiac Repair in Infarcted Rat Hearts. Journal of Biological Chemistry, 2007, 282, 14243-14252.	3.4	152
62	Turning on stem cell cardiogenesis with extremely low frequency magnetic fields. FASEB Journal, 2005, 19, 155-157.	0.5	81
63	Butyric and Retinoic Mixed Ester of Hyaluronan. Journal of Biological Chemistry, 2004, 279, 23574-23579.	3.4	72
64	Protein Kinase C Signaling Transduces Endorphin-Primed Cardiogenesis in GTR1 Embryonic Stem Cells. Circulation Research, 2003, 92, 617-622.	4.5	54
65	Dynorphin B Is an Agonist of Nuclear Opioid Receptors Coupling Nuclear Protein Kinase C Activation to the Transcription of Cardiogenic Genes in GTR1 Embryonic Stem Cells. Circulation Research, 2003, 92, 623-629.	4.5	68
66	Opioid Peptide Gene Expression Primes Cardiogenesis in Embryonal Pluripotent Stem Cells. Circulation Research, 2000, 87, 189-194.	4.5	87
67	Elf-pulsed magnetic fields modulate opioid peptide gene expression in myocardial cells. Cardiovascular Research, 2000, 45, 1054-1064.	3.8	35
68	Heparin down-regulates the phorbol ester-induced protein kinase C gene expression in human endothelial cells: enzyme-mediated autoregulation of protein kinase C-α and -δgenes1. FEBS Letters, 1999, 449, 135-140.	2.8	8
69	Heparin inhibits phorbol ester-induced ornithine decarboxylase gene expression in endothelial cells. FEBS Letters, 1998, 423, 98-104.	2.8	9
70	Nuclear Opioid Receptors Activate Opioid Peptide Gene Transcription in Isolated Myocardial Nuclei. Journal of Biological Chemistry, 1998, 273, 13383-13386.	3.4	46