Paitoon Tontiwachwuthikul

List of Publications by Citations

Source:

https://exaly.com/author-pdf/7270283/paitoon-tontiwachwuthikul-publications-by-citations.pdf **Version:** 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

276 85 9,720 54 h-index g-index citations papers 6.37 11,041 290 4.3 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
276	Pilot Plant Studies of the CO2 Capture Performance of Aqueous MEA and Mixed MEA/MDEA Solvents at the University of Regina CO2 Capture Technology Development Plant and the Boundary Dam CO2 Capture Demonstration Plant. <i>Industrial & Description of Control of Control</i>	3.9	418
275	Recent progress and new developments in post-combustion carbon-capture technology with amine based solvents. <i>International Journal of Greenhouse Gas Control</i> , 2015 , 40, 26-54	4.2	291
274	Kinetics of the reactive absorption of carbon dioxide in high CO2-loaded, concentrated aqueous monoethanolamine solutions. <i>Chemical Engineering Science</i> , 2003 , 58, 5195-5210	4.4	277
273	Photocatalytic Process for CO2Emission Reduction from Industrial Flue Gas Streams. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 2558-2568	3.9	276
272	Corrosion Behavior of Carbon Steel in the CO2 Absorption Process Using Aqueous Amine Solutions. <i>Industrial & Description of Chemistry Research</i> , 1999 , 38, 3917-3924	3.9	247
271	Using polypropylene and polytetrafluoroethylene membranes in a membrane contactor for CO2 absorption. <i>Journal of Membrane Science</i> , 2006 , 277, 99-107	9.6	177
270	CO2 absorption by NaOH, monoethanolamine and 2-amino-2-methyl-1-propanol solutions in a packed column. <i>Chemical Engineering Science</i> , 1992 , 47, 381-390	4.4	155
269	Comparing the Absorption Performance of Packed Columns and Membrane Contactors. <i>Industrial & Engineering Chemistry Research</i> , 2005 , 44, 5726-5732	3.9	147
268	Comparing membrane resistance and absorption performance of three different membranes in a gas absorption membrane contactor. <i>Separation and Purification Technology</i> , 2009 , 65, 290-297	8.3	144
267	Interfacial Tensions of the Crude Oil + Reservoir Brine + CO2 Systems at Pressures up to 31 MPa and Temperatures of 27 LC and 58 LC. <i>Journal of Chemical & Chemical & Control of Chemical & Control o</i>	2.8	139
266	The genetic algorithm based back propagation neural network for MMP prediction in CO2-EOR process. <i>Fuel</i> , 2014 , 126, 202-212	7.1	131
265	Artificial intelligence for monitoring and supervisory control of process systems. <i>Engineering Applications of Artificial Intelligence</i> , 2007 , 20, 115-131	7.2	131
264	Solubility of carbon dioxide in 2-amino-2-methyl-1-propanol solutions. <i>Journal of Chemical & Engineering Data</i> , 1991 , 36, 130-133	2.8	123
263	Reaction Kinetics of CO2in Aqueous Ethylenediamine, Ethyl Ethanolamine, and Diethyl Monoethanolamine Solutions in the Temperature Range of 298B13 K, Using the Stopped-Flow Technique. <i>Industrial & Diethyles amp; Engineering Chemistry Research</i> , 2007 , 46, 4426-4434	3.9	120
262	Catalytic and non catalytic solvent regeneration during absorption-based CO2 capture with single and blended reactive amine solvents. <i>International Journal of Greenhouse Gas Control</i> , 2014 , 26, 39-50	4.2	116
261	Kinetics of the Absorption of CO2 into Mixed Aqueous Loaded Solutions of Monoethanolamine and Methyldiethanolamine. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 2608-2616	3.9	115
260	Analysis of Monoethanolamine and Its Oxidative Degradation Products during CO2 Absorption from Flue Gases: A Comparative Study of GC-MS, HPLC-RID, and CE-DAD Analytical Techniques and Possible Optimum Combinations. <i>Industrial & Description Chemistry Research</i> , 2006, 45, 2437-2451	3.9	115

(2016-2016)

259	Review on current advances, future challenges and consideration issues for post-combustion CO2 capture using amine-based absorbents. <i>Chinese Journal of Chemical Engineering</i> , 2016 , 24, 278-288	3.2	113	
258	Integration of post-combustion capture and storage into a pulverized coal-fired power plant. International Journal of Greenhouse Gas Control, 2010, 4, 499-510	4.2	105	
257	Behavior of the Mass-Transfer Coefficient of Structured Packings in CO2 Absorbers with Chemical Reactions. <i>Industrial & Engineering Chemistry Research</i> , 1999 , 38, 2044-2050	3.9	105	
256	Wettability Determination of the Reservoir Brine R eservoir Rock System with Dissolution of CO2 at High Pressures and Elevated Temperatures. <i>Energy & Energy & Energ</i>	4.1	101	
255	Mass Transfer Coefficients and Correlation for CO2 Absorption into 2-Amino-2-methyl-1-propanol (AMP) Using Structured Packing. <i>Industrial & Engineering Chemistry Research</i> , 1998 , 37, 569-575	3.9	100	
254	Kinetics of sulfur dioxide- and oxygen-induced degradation of aqueous monoethanolamine solution during CO2 absorption from power plant flue gas streams. <i>International Journal of Greenhouse Gas Control</i> , 2009 , 3, 133-142	4.2	96	
253	Comprehensive mass transfer and reaction kinetics studies of CO2 absorption into aqueous solutions of blended MDEAMEA. <i>Chemical Engineering Journal</i> , 2012 , 209, 501-512	14.7	94	
252	Mathematical modelling of mass-transfer and hydrodynamics in CO2 absorbers packed with structured packings. <i>Chemical Engineering Science</i> , 2003 , 58, 4037-4053	4.4	94	
251	A study of structureEctivity relationships of commercial tertiary amines for post-combustion CO2 capture. <i>Applied Energy</i> , 2016 , 184, 219-229	10.7	93	
250	Effect of internal coagulant on effectiveness of polyvinylidene fluoride membrane for carbon dioxide separation and absorption. <i>Journal of Membrane Science</i> , 2008 , 311, 153-158	9.6	88	
249	CO2 stripping from monoethanolamine using a membrane contactor. <i>Journal of Membrane Science</i> , 2011 , 376, 110-118	9.6	86	
248	Practical experience in post-combustion CO2 capture using reactive solvents in large pilot and demonstration plants. <i>International Journal of Greenhouse Gas Control</i> , 2015 , 40, 6-25	4.2	85	
247	Solubilities of Carbon Dioxide in Polyethylene Glycol Ethers. <i>Canadian Journal of Chemical Engineering</i> , 2008 , 83, 358-361	2.3	85	
246	Mass Transfer Performance of CO2 Absorption into Aqueous Solutions of 4-Diethylamino-2-butanol, Monoethanolamine, and N-Methyldiethanolamine. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 6470-6479	3.9	81	
245	Enhanced light oil recovery from tight formations through CO 2 huff Ellpuff processes. Fuel, 2015 , 154, 35-44	7.1	80	
244	NMR Studies of Amine Species in MEAIIO2H2O System: Modification of the Model of VaporIliquid Equilibrium (VLE). <i>Industrial & Engineering Chemistry Research</i> , 2009 , 48, 2717-2720	3.9	80	
243	Carbon dioxide (CO2) capture: Absorption-desorption capabilities of 2-amino-2-methyl-1-propanol (AMP), piperazine (PZ) and monoethanolamine (MEA) tri-solvent blends. <i>Journal of Natural Gas Science and Engineering</i> , 2016 , 33, 742-750	4.6	78	
242	Experimental study on the solvent regeneration of a CO2-loaded MEA solution using single and hybrid solid acid catalysts. <i>AICHE Journal</i> , 2016 , 62, 753-765	3.6	78	

241	Synthesis, solubilities, and cyclic capacities of amino alcohols for CO2 capture from flue gas streams. <i>Energy Procedia</i> , 2009 , 1, 1327-1334	2.3	77
240	Reaction Kinetics of CO2 in Aqueous 1-Amino-2-Propanol, 3-Amino-1-Propanol, and Dimethylmonoethanolamine Solutions in the Temperature Range of 298B13 K Using the Stopped-Flow Technique. <i>Industrial & Engineering Chemistry Research</i> , 2008 , 47, 2213-2220	3.9	74
239	Volumetric Properties and Viscosities for Aqueous N-Methyl-2-pyrrolidone Solutions from 25 LC to 70 LC. <i>Journal of Chemical & Engineering Data</i> , 2004 , 49, 231-234	2.8	73
238	Correlations for Equilibrium Solubility of Carbon Dioxide in Aqueous 4-(Diethylamino)-2-butanol Solutions. <i>Industrial & Engineering Chemistry Research</i> , 2011 , 50, 14008-14015	3.9	66
237	Interfacial Interactions between Reservoir Brine and CO2 at High Pressures and Elevated Temperatures. <i>Energy & Dos States and Elevated States and</i>	4.1	66
236	Experimental study on mass transfer and prediction using artificial neural network for CO2 absorption into aqueous DETA. <i>Chemical Engineering Science</i> , 2013 , 100, 195-202	4.4	65
235	Solubility, absorption heat and mass transfer studies of CO2 absorption into aqueous solution of 1-dimethylamino-2-propanol. <i>Fuel</i> , 2015 , 144, 121-129	7.1	64
234	Reducing energy consumption of CO2 desorption in CO2-loaded aqueous amine solution using Al2O3/HZSM-5 bifunctional catalysts. <i>Applied Energy</i> , 2018 , 229, 562-576	10.7	64
233	Investigation of Mass-Transfer Performance for CO2 Absorption into Diethylenetriamine (DETA) in a Randomly Packed Column. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 12058-12064	3.9	63
232	Synthesis of new amines for enhanced carbon dioxide (CO2) capture performance: The effect of chemical structure on equilibrium solubility, cyclic capacity, kinetics of absorption and regeneration and Purification Technology,	8.3	63
231	Screening tests of aqueous alkanolamine solutions based on primary, secondary, and tertiary structure for blended aqueous amine solution selection in post combustion CO2 capture. <i>Chemical Engineering Science</i> , 2017 , 170, 574-582	4.4	61
230	Heat duty, heat of absorption, sensible heat and heat of vaporization of 2AminoIMethyllBropanol (AMP), Piperazine (PZ) and Monoethanolamine (MEA) triBolvent blend for carbon dioxide (CO2) capture. <i>Chemical Engineering Science</i> , 2017 , 170, 26-35	4.4	61
229	A mathematical model for gas absorption membrane contactors that studies the effect of partially wetted membranes. <i>Journal of Membrane Science</i> , 2010 , 347, 228-239	9.6	61
228	Analysis of CO 2 solubility and absorption heat into 1-dimethylamino-2-propanol solution. <i>Chemical Engineering Science</i> , 2017 , 170, 3-15	4.4	60
227	13C NMR Spectroscopy of a Novel Amine Species in the DEAB©O2H2O system: VLE Model. <i>Industrial & Deap Company Chemistry Research</i> , 2012 , 51, 8608-8615	3.9	58
226	Volumetric Properties and Viscosities for Aqueous AMP Solutions from 25 LC to 70 LC. <i>Journal of Chemical & Ch</i>	2.8	57
225	Kinetics of CO2 absorption into a novel 1-diethylamino-2-propanol solvent using stopped-flow technique. <i>AICHE Journal</i> , 2014 , 60, 3502-3510	3.6	56
224	Experimental studies of regeneration heat duty for CO2 desorption from diethylenetriamine (DETA) solution in a stripper column packed with Dixon ring random packing. <i>Fuel</i> , 2014 , 136, 261-267	7.1	56

223	Experimental and Theoretical Determination of Equilibrium Interfacial Tension for the Solvent(s) ICO2 Heavy Oil Systems. <i>Energy & Energy </i>	4.1	55
222	Experimental analyses of mass transfer and heat transfer of post-combustion CO2 absorption using hybrid solvent MEAMeOH in an absorber. <i>Chemical Engineering Journal</i> , 2015 , 260, 11-19	14.7	54
221	Carbon dioxide (CO2) capture performance of aqueous tri-solvent blends containing 2-amino-2-methyl-1-propanol (AMP) and methyldiethanolamine (MDEA) promoted by diethylenetriamine (DETA). <i>International Journal of Greenhouse Gas Control</i> , 2016 , 53, 292-304	4.2	54
220	Wettability Determination of the Crude OilReservoir BrineReservoir Rock System with Dissolution of CO 2 at High Pressures and Elevated Temperatures. <i>Energy & Dissolution of CO 2 at High Pressures and Elevated Temperatures</i> . <i>Energy & Dissolution of CO 2 at High Pressures and Elevated Temperatures</i> .	3 1 71	54
219	Investigation of Low-Toxic Organic Corrosion Inhibitors for CO2 Separation Process Using Aqueous MEA Solvent. <i>Industrial & Damp; Engineering Chemistry Research</i> , 2001 , 40, 4771-4777	3.9	54
218	Part 5b: Solvent chemistry: reaction kinetics of CO2 absorption into reactive amine solutions. <i>Carbon Management</i> , 2012 , 3, 201-220	3.3	51
217	Rigorous Model for Predicting the Behavior of CO2 Absorption into AMP in Packed-Bed Absorption Columns. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 2553-2557	3.9	49
216	An improved fast screening method for single and blended amine-based solvents for post-combustion CO2 capture. <i>Separation and Purification Technology</i> , 2016 , 169, 279-288	8.3	49
215	Evaluation of the heat duty of catalyst-aided amine-based post combustion CO2 capture. <i>Chemical Engineering Science</i> , 2017 , 170, 48-57	4.4	48
214	Comparative Mass Transfer Performance Studies of CO2 Absorption into Aqueous Solutions of DEAB and MEA. <i>Industrial & Deap amp; Engineering Chemistry Research</i> , 2010 , 49, 2857-2863	3.9	48
213	Kinetics of the Oxidative Degradation of Aqueous Monoethanolamine in a Flue Gas Treating Unit. <i>Industrial & Degramation Chemistry Research</i> , 2001 , 40, 3445-3450	3.9	47
212	Reducing Energy Penalty of CO Capture Using Fe Promoted SO/ZrO/MCM-41 Catalyst. <i>Environmental Science & Environmental Science</i>	10.3	46
211	Mechanism of formation of heat stable salts (HSSs) and their roles in further degradation of monoethanolamine during CO2 capture from flue gas streams. <i>Energy Procedia</i> , 2011 , 4, 591-598	2.3	46
210	Advancement and new perspectives of using formulated reactive amine blends for post-combustion carbon dioxide (CO2) capture technologies. <i>Petroleum</i> , 2017 , 3, 10-36	4.1	45
209	Investigation of CO2 Regeneration in Single and Blended Amine Solvents with and without Catalyst. <i>Industrial & Discourse Communication Chemistry Research</i> , 2017 , 56, 7656-7664	3.9	45
208	Investigation of the effects of operating parameters on the local mass transfer coefficient and membrane wetting in a membrane gas absorption process. <i>Journal of Membrane Science</i> , 2015 , 490, 236	5-2246	44
207	Parametric studies of carbon dioxide absorption into highly concentrated monoethanolamine solutions. <i>Canadian Journal of Chemical Engineering</i> , 2001 , 79, 137-142	2.3	44
206	Comparative studies of heat duty and total equivalent work of a new heat pump distillation with split flow process, conventional split flow process, and conventional baseline process for CO2 capture using monoethanolamine. International Journal of Greenhouse Gas Control 2014, 24, 87-97	4.2	43

205	Studies of Corrosion and Corrosion Control in a CO2🛭-Amino-2-methyl-1-propanol (AMP) Environment. <i>Industrial & Environment amp; Engineering Chemistry Research</i> , 1997 , 36, 264-269	3.9	43
204	Simulation of pilot plant and industrial CO2-MEA absorbers. <i>Separation and Purification Technology</i> , 1993 , 7, 47-52		43
203	Analysis of reaction kinetics of CO2 absorption into a novel reactive 4-diethylamino-2-butanol solvent. <i>Chemical Engineering Science</i> , 2012 , 81, 251-259	4.4	42
202	Part 1: Design, modeling and simulation of post-combustion CO2 capture systems using reactive solvents. <i>Carbon Management</i> , 2011 , 2, 265-288	3.3	42
201	Study of cyclic CO2 injection for low-pressure light oil recovery under reservoir conditions. <i>Fuel</i> , 2016 , 174, 296-306	7.1	42
200	Part 5c: Solvent chemistry: solubility of CO2 in reactive solvents for post-combustion CO2. <i>Carbon Management</i> , 2012 , 3, 467-484	3.3	41
199	Corrosion Behavior of Carbon Steel in the Monoethanolamine #20 IO2 IO2 System: Products, Reaction Pathways, and Kinetics. <i>Industrial & amp; Engineering Chemistry Research</i> , 2009 , 48, 10169-10179	3.9	41
198	Densities and Viscosities for Binary Mixtures ofN-Methyldiethanolamine + Triethylene Glycol Monomethyl Ether from 25 °C to 70 °C andN-Methyldiethanolamine + Ethanol Mixtures at 40 °C. Journal of Chemical & Camp; Engineering Data, 2000, 45, 247-253	2.8	41
197	Mechanistic model for prediction of structured packing mass transfer performance in CO2 absorption with chemical reactions. <i>Chemical Engineering Science</i> , 2000 , 55, 3651-3663	4.4	39
196	A comparative kinetics study of CO2 absorption into aqueous DEEA/MEA and DMEA/MEA blended solutions. <i>AICHE Journal</i> , 2018 , 64, 1350-1358	3.6	39
195	Volumetric Properties, Viscosities, and Refractive Indices for Aqueous 2-(Methylamino)ethanol Solutions from (298.15 to 343.15) K. <i>Journal of Chemical & Engineering Data</i> , 2007 , 52, 560-565	2.8	38
194	Analysis of CO2 equilibrium solubility of seven tertiary amine solvents using thermodynamic and ANN models. <i>Fuel</i> , 2019 , 249, 61-72	7.1	36
193	Enhancement factor and kinetics of CO2 capture by MEA-methanol hybrid solvents. <i>Energy Procedia</i> , 2009 , 1, 95-102	2.3	36
192	Zeolite catalyst-aided tri-solvent blend amine regeneration: An alternative pathway to reduce the energy consumption in amine-based CO2 capture process. <i>Applied Energy</i> , 2019 , 240, 827-841	10.7	35
191	Volumetric Properties and Viscosities for Aqueous Diisopropanolamine Solutions from 25 °C to 70 °C. Journal of Chemical & Data, 2003, 48, 1062-1067	2.8	35
190	Analysis of solubility, absorption heat and kinetics of CO 2 absorption into 1-(2-hydroxyethyl)pyrrolidine solvent. <i>Chemical Engineering Science</i> , 2017 , 162, 120-130	4.4	34
189	Effects of flue gas composition on carbon steel (1020) corrosion in MEA-based CO2 capture process. <i>International Journal of Greenhouse Gas Control</i> , 2013 , 19, 340-349	4.2	34
188	Studies on corrosion and corrosion inhibitors for amine based solvents for CO2 absorption from power plant flue gases containing CO2, O2 and SO2. <i>Energy Procedia</i> , 2011 , 4, 1761-1768	2.3	34

187	High pressure physical solubility of carbon dioxide (CO2) in mixed polyethylene glycol dimethyl ethers (Genosorb 1753). <i>Canadian Journal of Chemical Engineering</i> , 2012 , 90, 576-583	2.3	33	
186	Solubility Study of Methane and Ethane in Promising Physical Solvents for Natural Gas Sweetening Operations. <i>Journal of Chemical & Data</i> , 2006, 51, 64-67	2.8	33	
185	Kinetics and mechanism study of homogeneous reaction of CO2 and blends of diethanolamine and monoethanolamine using the stopped-flow technique. <i>Chemical Engineering Journal</i> , 2017 , 316, 592-60	0 ^{14.7}	32	
184	Dynamic Interfacial Tension Method for Measuring Gas Diffusion Coefficient and Interface Mass Transfer Coefficient in a Liquid. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 4999-5008	3.9	32	
183	Artificial neural network models for the prediction of CO2 solubility in aqueous amine solutions. <i>International Journal of Greenhouse Gas Control</i> , 2015 , 39, 174-184	4.2	31	
182	An integrated expert system/operations research approach for the optimization of natural gas pipeline operations. <i>Engineering Applications of Artificial Intelligence</i> , 2000 , 13, 465-475	7.2	31	
181	A toolset for construction of hybrid intelligent forecasting systems: application for water demand prediction. <i>Advanced Engineering Informatics</i> , 1999 , 13, 21-42		31	
180	The analysis of solubility, absorption kinetics of CO2 absorption into aqueous 1-diethylamino-2-propanol solution. <i>AICHE Journal</i> , 2017 , 63, 2694-2704	3.6	30	
179	CO2 absorption kinetics of 4-diethylamine-2-butanol solvent using stopped-flow technique. <i>Separation and Purification Technology</i> , 2014 , 136, 81-87	8.3	30	
178	Rheological properties study of foam fracturing fluid using CO2 and surfactant. <i>Chemical Engineering Science</i> , 2017 , 170, 720-730	4.4	29	
177	Analysis of Mass Transfer Performance of Monoethanolamine-Based CO2 Absorption in a Packed Column Using Artificial Neural Networks. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 44	13-442	3 ²⁹	
176	Physicochemical properties of {1-methyl piperazine (1) + water (2)} system at T= (298.15 to 343.15) K and atmospheric pressure. <i>Journal of Chemical Thermodynamics</i> , 2011 , 43, 1897-1905	2.9	29	
175	Techno-economic analysis of CO2 capture from a 1.2 million MTPA cement plant using AMP-PZ-MEA blend. <i>International Journal of Greenhouse Gas Control</i> , 2018 , 78, 400-412	4.2	29	
174	SO42/ZrO2 supported on FAl2O3 as a catalyst for CO2 desorption from CO2-loaded monoethanolamine solutions. <i>AICHE Journal</i> , 2018 , 64, 3988-4001	3.6	28	
173	Modelling the Performance of a CO2Absorber Containing Structured Packing. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 2594-2600	3.9	28	
172	Densities and Viscosities of Triethylene Glycol Monomethyl Ether +Water Solutions in the Temperature Interval 25 LCB0 LC. <i>Journal of Chemical & Data, 1999</i> , 44, 101-107	2.8	28	
171	Density, Viscosity, and N2O Solubility of Aqueous 2-(Methylamino)ethanol Solution. <i>Journal of Chemical & Chem</i>	2.8	27	
170	1D NMR Analysis of a Quaternary MEADEAB©O2H2O Amine System: Liquid Phase Speciation and VaporDiquid Equilibria at CO2 Absorption and Solvent Regeneration Conditions. <i>Industrial Samp: Engineering Chemistry Research</i> 2014 53, 8577-8591	3.9	27	

169	Kinetics of the reaction of carbon dioxide (CO2) with cyclic amines using the stopped-flow technique. <i>Energy Procedia</i> , 2011 , 4, 140-147	2.3	27
168	Estimation of Relative Permeability by Assisted History Matching Using the Ensemble Kalman Filter Method. <i>Journal of Canadian Petroleum Technology</i> , 2012 , 51, 205-214		27
167	Influence of Process Parameters on Corrosion Behavior in a Sterically Hindered Amine ICO2 System. <i>Industrial & Description of the System of t</i>	3.9	27
166	Life-Cycle Analysis of CO2EOR on EOR and Geological Storage through Economic Optimization and Sensitivity Analysis Using the Weyburn Unit as a Case Study\(\textstyle{\pi}\)Industrial & Engineering Chemistry Research, 2006, 45, 2483-2488	3.9	26
165	Catalytic performance and mechanism of SO42/ZrO2/SBA-15 catalyst for CO2 desorption in CO2-loaded monoethanolamine solution. <i>Applied Energy</i> , 2020 , 259, 114179	10.7	26
164	Mass transfer of CO2 absorption in hybrid MEA-methanol solvents in packed column. <i>Energy Procedia</i> , 2013 , 37, 883-889	2.3	25
163	Comprehensive mass transfer and reaction kinetics studies of a novel reactive 4-diethylamino-2-butanol solvent for capturing CO2. <i>Chemical Engineering Science</i> , 2013 , 100, 183-194	4.4	25
162	Part 3: Corrosion and prevention in post-combustion CO2 capture systems. <i>Carbon Management</i> , 2011 , 2, 659-675	3.3	25
161	Corrosion Behavior of Carbon Steel in the Monoethanolamine #20f02f02f02 System. Industrial & Engineering Chemistry Research, 2009, 48, 8913-8919	3.9	25
160	Experimental study of the kinetics of the homogenous reaction of CO2 into a novel aqueous 3-diethylamino-1,2-propanediol solution using the stopped-flow technique. <i>Chemical Engineering Journal</i> , 2015 , 270, 485-495	14.7	24
159	Investigation mechanism of DEA as an activator on aqueous MEA solution for postcombustion CO2 capture. <i>AICHE Journal</i> , 2018 , 64, 2515-2525	3.6	24
158	Ensemble-Based Relative Permeability Estimation Using B-Spline Model. <i>Transport in Porous Media</i> , 2010 , 85, 703-721	3.1	24
157	Amine-based CO2 capture aided by acid-basic bifunctional catalyst: Advancement of amine regeneration using metal modified MCM-41. <i>Chemical Engineering Journal</i> , 2020 , 383, 123077	14.7	24
156	Mass transfer studies on catalyst-aided CO2 desorption from CO2-loaded amine solution in a post-combustion CO2 capture plant. <i>Chemical Engineering Science</i> , 2017 , 170, 508-517	4.4	23
155	Novel models for correlation of Solubility constant and diffusivity of N2O in aqueous 1-dimethylamino-2-propanol. <i>Chemical Engineering Science</i> , 2019 , 203, 86-103	4.4	23
154	Analysis and predictive correlation of mass transfer coefficient . <i>International Journal of Greenhouse Gas Control</i> , 2013 , 19, 3-12	4.2	23
153	From neural network to neuro-fuzzy modeling: Applications to the carbon dioxide capture process. <i>Energy Procedia</i> , 2011 , 4, 2066-2073	2.3	23
152	Densities, Viscosities, and Derived Functions of Binary Mixtures: (Triethylene Glycol Dimethyl Ether + Water) and (N-Acetylmorpholine + Water) from 298.15 K to 343.15 K. <i>Journal of Chemical & Engineering Data</i> , 2005 , 50, 1038-1042	2.8	23

(2020-2001)

151	Volumetric Properties and Viscosities for Aqueous Diglycolamine Solutions from 25 LC to 70 LC. Journal of Chemical & Description Data, 2001 , 46, 56-62	2.8	23	
150	A new model for correlation and prediction of equilibrium CO2 solubility in N-methyl-4-piperidinol solvent. <i>AICHE Journal</i> , 2017 , 63, 3395-3403	3.6	22	
149	Reaction Kinetics of Carbon Dioxide (CO2) with Diethylenetriamine and 1-Amino-2-propanol in Nonaqueous Solvents Using Stopped-Flow Technique. <i>Industrial & Engineering Chemistry Research</i> , 2016 , 55, 7307-7317	3.9	22	
148	Catalytic-CO2-Desorption Studies of DEA and DEAMEA Blended Solutions with the Aid of Lewis and Brfisted Acids. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 11505-11516	3.9	22	
147	Solubility and Diffusivity of N2O in Aqueous 4-(Diethylamino)-2-butanol Solutions for Use in Postcombustion CO2 Capture. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 925-930	3.9	22	
146	Novel Design for the Nozzle of a Laminar Jet Absorber. <i>Industrial & Design for the Nozzle of a Laminar Jet Absorber</i> . <i>Industrial & Design for the Nozzle of a Laminar Jet Absorber</i> . <i>Industrial & Design for the Nozzle of a Laminar Jet Absorber</i> . <i>Industrial & Design for the Nozzle of a Laminar Jet Absorber</i> . <i>Industrial & Design for the Nozzle of a Laminar Jet Absorber</i> . <i>Industrial & Design for the Nozzle of a Laminar Jet Absorber</i> . <i>Industrial & Design for the Nozzle of a Laminar Jet Absorber</i> . <i>Industrial & Design for the Nozzle of a Laminar Jet Absorber</i> . <i>Industrial & Design for the Nozzle of a Laminar Jet Absorber</i> . <i>Industrial & Design for the Nozzle of a Laminar Jet Absorber</i> .	3.9	22	
145	CO2 capture efficiency and heat duty of solid acid catalyst-aided CO2 desorption using blends of primary-tertiary amines. <i>International Journal of Greenhouse Gas Control</i> , 2018 , 69, 52-59	4.2	21	
144	Experiments and modeling of vapor-liquid equilibrium data in DEEA-CO2-H2O system. <i>International Journal of Greenhouse Gas Control</i> , 2016 , 53, 160-168	4.2	21	
143	Determination of Vaporlliquid Equilibrium (VLE) Plots of 1-Dimethylamino-2-propanol Solutions Using the pH Method. <i>Industrial & Engineering Chemistry Research</i> , 2015 , 54, 4709-4716	3.9	20	
142	A life cycle assessment study of a hypothetical Canadian oxy-fuel combustion carbon dioxide capture process. <i>International Journal of Greenhouse Gas Control</i> , 2014 , 28, 257-274	4.2	20	
141	Comparison of Overall Gas-Phase Mass Transfer Coefficient for CO2 Absorption between Tertiary Amines in a Randomly Packed Column. <i>Chemical Engineering and Technology</i> , 2015 , 38, 1435-1443	2	20	
140	Part 5a: Solvent chemistry: NMR analysis and studies for amine IO2 H2O systems with vapor I quid equilibrium modeling for CO2 capture processes. <i>Carbon Management</i> , 2012 , 3, 185-200	3.3	20	
139	Densities, Viscosities, and Derived Functions of Binary Mixtures: (Tetraethylene Glycol Dimethyl Ether + Water) from 298.15 K to 343.15 K. <i>Journal of Chemical & Che</i>	78 ⁸ 1	20	
138	A comparative study of novel activated AMP using 1,5-diamino-2-methylpentane vs MEA solution for CO2 capture from gas-fired power plant. <i>Fuel</i> , 2018 , 234, 1089-1098	7.1	19	
137	Simulation of CO2-Oil Minimum Miscibility Pressure (MMP) for CO2 Enhanced Oil Recovery (EOR) using Neural Networks. <i>Energy Procedia</i> , 2013 , 37, 6877-6884	2.3	19	
136	Modeling of the carbon dioxide capture process system using machine intelligence approaches. <i>Engineering Applications of Artificial Intelligence</i> , 2011 , 24, 673-685	7.2	18	
135	Physical and transport properties of aqueous amino alcohol solutions for CO2 capture from flue gas streams. <i>Chemical Engineering Research and Design</i> , 2008 , 86, 291-295	5.5	18	
134	Kinetics and new Brfisted correlations study of CO2 absorption into primary and secondary alkanolamine with and without steric-hindrance. <i>Separation and Purification Technology</i> , 2020 , 233, 115	98g	18	

133	Part 6: Solvent recycling and reclaiming issues. Carbon Management, 2012, 3, 485-509	3.3	17
132	Studies of the coordination effect of DEA-MEA blended amines (within 1 + 4 to 2 + 3 M) under heterogeneous catalysis by means of absorption and desorption parameters. <i>Separation and Purification Technology</i> , 2020 , 236, 116179	8.3	17
131	Modified Heterogeneous Catalyst-Aided Regeneration of CO2 Capture Amines: A Promising Perspective for a Drastic Reduction in Energy Consumption. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 9526-9536	8.3	16
130	A Comparative of Life Cycle Assessment of Post-combustion, Pre-combustion and Oxy-fuel CO2 Capture. <i>Energy Procedia</i> , 2014 , 63, 7452-7458	2.3	16
129	1D absorption kinetics modeling of CO2DEABH2O system. <i>International Journal of Greenhouse Gas Control</i> , 2013 , 12, 390-398	4.2	16
128	Part 2: Solvent management: solvent stability and amine degradation in CO2 capture processes. <i>Carbon Management</i> , 2011 , 2, 551-566	3.3	16
127	Investigation of degradation inhibitors on CO2 capture process. <i>Energy Procedia</i> , 2011 , 4, 583-590	2.3	16
126	Recent progress and new development of post-combustion carbon-capture technology using reactive solvents. <i>Carbon Management</i> , 2011 , 2, 261-263	3.3	16
125	High-Pressure Solubility of Methane (CH4) and Ethane (C2H6) in Mixed Polyethylene Glycol Dimethyl Ethers (Genosorb 1753) and Its Selectivity in Natural Gas Sweetening Operations. <i>Journal of Chemical & Data</i> , 2012, 57, 764-775	2.8	15
124	Molar heat capacities of solvents used in CO2 capture: A group additivity and molecular connectivity analysis. <i>Canadian Journal of Chemical Engineering</i> , 2012 , 90, 367-376	2.3	15
123	Reaction kinetics of carbon dioxide with aqueous solutions of l-Arginine, Glycine & Sarcosine using the stopped flow technique. <i>International Journal of Greenhouse Gas Control</i> , 2017 , 63, 47-58	4.2	14
122	Experimental Studies of Reboiler Heat Duty for CO2 Desorption from Triethylenetetramine (TETA) and Triethylenetetramine (TETA) + N-Methyldiethanolamine (MDEA). <i>Industrial & amp; Engineering Chemistry Research</i> , 2015 , 54, 8554-8560	3.9	14
121	Mass transfer studies of high performance structured packing for CO2 separation processes. Energy Conversion and Management, 1997 , 38, S75-S80	10.6	14
120	Process simulation and parametric sensitivity study of CO2 capture from 115 MW coalfired power plant using MEADEA blend. <i>International Journal of Greenhouse Gas Control</i> , 2018 , 76, 1-11	4.2	14
119	Modeling of CO2 equilibrium solubility in a novel 1-Diethylamino-2-Propanol Solvent. <i>AICHE Journal</i> , 2017 , 63, 4465-4475	3.6	13
118	CO2 desorption tests of blended monoethanolaminelliethanolamine solutions to discover novel energy efficient solvents. <i>Asia-Pacific Journal of Chemical Engineering</i> , 2018 , 13, e2186	1.3	13
117	Life Cycle Assessment of Post-combustion CO2 Capture and CO2-Enhanced Oil Recovery Based on the Boundary Dam Integrated Carbon Capture and Storage Demonstration Project in Saskatchewan. <i>Energy Procedia</i> , 2014 , 63, 7398-7407	2.3	13
116	The history and development of the IEA GHG Weyburn-Midale CO2 Monitoring and Storage Project in Saskatchewan, Canada (the world largest CO2 for EOR and CCS program). <i>Petroleum</i> , 2017 , 3, 3-9	4.1	12

115	The development of kinetics model for CO2 absorption into tertiary amines containing carbonic anhydrase. <i>AICHE Journal</i> , 2017 , 63, 4933-4943	3.6	12
114	Artificial Neural Networks for Accurate Prediction of Physical Properties of Aqueous Quaternary Systems of Carbon Dioxide (CO2)-Loaded 4-(Diethylamino)-2-butanol and Methyldiethanolamine Blended with Monoethanolamine. <i>Industrial & Diethylaming Chemistry Research</i> , 2016 , 55, 11614-116	3.9 5 21	12
113	A life cycle assessment study of a Canadian post-combustion carbon dioxide capture process system. <i>International Journal of Life Cycle Assessment</i> , 2014 , 19, 357-369	4.6	12
112	Heterogeneous catalysis of CO2-diethanolamine absorption with MgCO3 and CaCO3 and comparing to non-catalytic CO2-monoethanolamine interactions. <i>Reaction Kinetics, Mechanisms and Catalysis</i> , 2017 , 122, 539-555	1.6	12
111	Analysis of Reaction Kinetics of CO2 Absorption into a Novel 1-(2-Hydroxyethyl)-piperidine Solvent Using Stopped-Flow Technique. <i>Industrial & Engineering Chemistry Research</i> , 2015 , 54, 12525-12533	3.9	12
110	Off-gas emission in CO2 capture process using aqueous monoethanolamine solution. <i>Energy Procedia</i> , 2011 , 4, 504-511	2.3	12
109	Reaction kinetics of carbon dioxide in aqueous blends of N-methyldiethanolamine and glycine using the stopped flow technique. <i>Journal of Natural Gas Science and Engineering</i> , 2016 , 33, 186-195	4.6	12
108	Amine regeneration tests on MEA, DEA, and MMEA with respect to cabamate stability analyses. <i>Canadian Journal of Chemical Engineering</i> , 2017 , 95, 1471-1479	2.3	11
107	Better Choice of Tertiary Alkanolamines for Postcombustion CO2 Capture: Structure with Linear Alkanol Chain Instead of Branched. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 15344-15	3352	11
106	Thermal and Oxidative Degradation of Aqueous N, N-Diethylethanolamine (DEEA) at Stripping Conditions for CO2 Capture. <i>Energy Procedia</i> , 2014 , 63, 1911-1918	2.3	11
105	Optimizing Cyclic CO2 Injection for Low- permeability Oil Reservoirs through Experimental Study 2013 ,		11
104	An application of neuro-fuzzy technology for analysis of the CO2 capture process. <i>Fuzzy Sets and Systems</i> , 2010 , 161, 2597-2611	3.7	11
103	Volumetric Properties and Viscosities for Aqueous NFM Solutions from 25 LC to 70 LC. <i>Journal of Chemical & Ch</i>	2.8	11
102	Research and development activities on high efficiency separation process technologies for carbon dioxide removal from industrial sources at University of Regina, Canada. <i>Energy Conversion and Management</i> , 1996 , 37, 935-940	10.6	11
101	Novel pilot plant technique for sizing gas absorbers with chemical reactions. <i>Canadian Journal of Chemical Engineering</i> , 1989 , 67, 602-607	2.3	11
100	Carbon dioxide capture from pulp mill using 2-amino-2-methyl-1-propanol and monoethanolamine blend: Techno-economic assessment of advanced process configuration. <i>Applied Energy</i> , 2019 , 250, 120	2 ¹⁰ 716	i 10
99	High-Pressure Solubility of Carbon Dioxide (CO2) in Aqueous 1-Methyl Piperazine Solution. <i>Journal of Chemical & Data</i> , 2014, 59, 3610-3623	2.8	10
98	Application of neuro-fuzzy modeling technique for operational problem solving in a CO2 capture process system. <i>International Journal of Greenhouse Gas Control</i> , 2013 , 15, 32-41	4.2	10

97	Introduction to a decade of research by the IEAGHG Weyburn Midale CO2 Monitoring and Storage Project. <i>International Journal of Greenhouse Gas Control</i> , 2013 , 16, S1-S4	4.2	10
96	Evaluation of the Performance of Various Amine Based Solvents in an Optimized Multipurpose Technology Development Pilot Plant. <i>Energy Procedia</i> , 2009 , 1, 1543-1548	2.3	10
95	An improved correlation to determine minimum miscibility pressure of CO2Bil system. <i>Green Energy and Environment</i> , 2020 , 5, 97-104	5.7	10
94	CO2 capture from lime kiln using AMP-DA2MP amine solvent blend: A pilot plant study. <i>Journal of Environmental Chemical Engineering</i> , 2018 , 6, 7102-7110	6.8	10
93	Four nanoscale-extended equations of state: Phase behaviour of confined fluids in shale reservoirs. <i>Fuel</i> , 2019 , 250, 88-97	7.1	9
92	Viability of carbonated water injection (CWI) as a means of secondary oil recovery in heavy oil systems in presence and absence of wormholes: Microfluidic experiments. <i>Fuel</i> , 2019 , 249, 286-293	7.1	9
91	Catalytic Solvent Regeneration Using Hot Water During Amine Based CO2 Capture Process. <i>Energy Procedia</i> , 2014 , 63, 266-272	2.3	9
90	Mass transfer parameter estimation using optimization technique: Case study in CO2 absorption with chemical reaction. <i>Canadian Journal of Chemical Engineering</i> , 1999 , 77, 69-73	2.3	9
89	A novel reactive 4-diethylamino-2-butanol solvent for capturing CO2 in the aspect of absorption capacity, cyclic capacity, mass transfer, and reaction kinetics. <i>Energy Procedia</i> , 2013 , 37, 477-484	2.3	8
88	The Effect of Chemical Structure of Newly Synthesized Tertiary Amines Used for the Post Combustion Capture Process on Carbon dioxide (CO2): Kinetics of CO2 Absorption Using the Stopped-Flow Apparatus and Regeneration, and Heat Input of CO2 Regeneration. <i>Energy Procedia</i> ,	2.3	8
87	Recent progress and new developments in post-combustion carbon-capture technology with reactive solvents 2013 , 2-8		8
86	Membrane contacting process for CO2 desorption. <i>Energy Procedia</i> , 2011 , 4, 688-692	2.3	8
85	Using A Packed-Column Model To Simulate the Performance of A Membrane Absorber. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 2580-2585	3.9	8
84	Expert system for solvent selection of CO2 separation processes. <i>Expert Systems With Applications</i> , 1995 , 8, 33-46	7.8	8
83	A decision support system for solvent selection of CO2 separation processes. <i>Energy Conversion and Management</i> , 1996 , 37, 941-946	10.6	8
82	CO2 capture from water-gas shift process plant: Comparative bench-scale pilot plant investigation of MDEA-PZ blend vs novel MDEA activated by 1,5-diamino-2-methylpentane. <i>International Journal of Greenhouse Gas Control</i> , 2019 , 82, 218-228	4.2	7
81	Analysis of equilibrium CO2 solubility and thermodynamic models for aqueous 1-(2-hydoxyethyl)-piperidine solution. <i>AICHE Journal</i> , 2019 , 65, e16605	3.6	7
80	Parametric Process Design and Economic Analysis of Post-Combustion CO2 Capture and Compression for Coal- and Natural Gas-Fired Power Plants. <i>Energies</i> , 2020 , 13, 2519	3.1	7

79	Regeneration Energy Analysis of Aqueous TriBolvent Blends Containing 2Amino 2Methyl 1Bropanol (AMP), Methyldiethanolamine (MDEA) and Diethylenetriamine (DETA) for Carbon Dioxide (CO2) Capture. Energy Procedia, 2017, 114, 2039-2046	2.3	7
78	Latest research on fundamental studies of CO2 capture process technologies at the international test centre for CO2 capture. <i>Energy Procedia</i> , 2011 , 4, 1707-1712	2.3	7
77	On the Numerical Modeling of Gas Absorption into Reactive Liquids in a Laminar Jet Absorber. <i>Canadian Journal of Chemical Engineering</i> , 2008 , 81, 604-612	2.3	7
76	Pipeline Network Modeling and Simulation for Intelligent Monitoring and Control: A Case Study of a Municipal Water Supply System. <i>Industrial & Engineering Chemistry Research</i> , 1998 , 37, 1033-1044	3.9	7
75	Intelligent diagnostic system for a solar heating system. Expert Systems With Applications, 1999, 16, 157	- j 1.781	7
74	Application of Boordinative effectInto tri-solvent MEA+BEA+AMP blends at concentrations of 0.1 + 2 + 2~0.5 + 2 + 2 mol/L with absorption, desorption and mass transfer analyses. <i>International Journal of Greenhouse Gas Control</i> , 2021 , 107, 103267	4.2	7
73	Study of Catalytic COIAbsorption and Desorption with Tertiary Amine DEEA and 1DMA-2P with the Aid of Solid Acid and Solid Alkaline Chemicals. <i>Molecules</i> , 2019 , 24,	4.8	6
72	Reaction Kinetics of Carbon Dioxide with 2-Amino-1-butanol in Aqueous Solutions Using a Stopped-Flow Technique. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 2797-2804	3.9	6
71	Study on Diffusivity of CO2 in Oil-Saturated Porous Media under High Pressure and Temperature. <i>Energy & Diffusion (Control of Control of Contr</i>	4.1	6
70	Physical and Chemical Resistance of Elastomers in Aqueous Monoethanolamine (MEA) and CO2-Loaded MEA Solutions during Postcombustion Carbon Dioxide Capture Processes. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 5932-5940	3.9	6
69	An expert system for monitoring and diagnosis of ammonia emissions from the post-combustion carbon dioxide capture process system. <i>International Journal of Greenhouse Gas Control</i> , 2014 , 26, 158-1	6 8 ²	6
68	Ammonia emission kinetics of monoethanolamine (MEA) based CO2 absorption process. <i>International Journal of Greenhouse Gas Control</i> , 2013 , 12, 333-340	4.2	6
67	Kinetics and Reactor Modeling of the Steam Reforming of Methanol over a Mn-Promoted Cu/Al Catalyst. <i>Chemical Engineering and Technology</i> , 2015 , 38, 2305-2315	2	6
66	Catalytic Solvent Regeneration Using Hot Water During Amine Based CO2 Capture Process. <i>Energy Procedia</i> , 2014 , 63, 273-278	2.3	6
65	Liquid distribution of MEA in random and structured packing in a square column. <i>Energy Procedia</i> , 2009 , 1, 1155-1161	2.3	6
64	Computer-Aided Simulation Model for Natural Gas Pipeline Network System Operations. <i>Industrial & Engineering Chemistry Research</i> , 2004 , 43, 990-1002	3.9	6
63	New feasibility study of carbon dioxide production from coal-fired power plants for enhanced oil recovery: A Canadian perspective. <i>Energy Conversion and Management</i> , 1996 , 37, 1129-1134	10.6	6
62	RESERVOIR ROCK TYPE ANALYSIS USING STATISTICAL PORE SIZE DISTRIBUTION. <i>Special Topics and Reviews in Porous Media</i> , 2012 , 3, 97-103	2.5	6

61	Reaction kinetics of the absorption of carbon dioxide (CO 2) in aqueous solutions of sterically hindered secondary alkanolamines using the stopped-flow technique. <i>Chemical Engineering Science</i> , 2017 , 170, 16-25	4.4	5
60	Development of Ion Speciation Plots for Three Promising Tertiary Amine IO2 H2O Systems Using the pH Method and the 13C NMR Method. <i>Energy & Description</i> 2017, 31, 3069-3080	4.1	5
59	Reaction Kinetics of Carbon Dioxide in Aqueous Blends of N-Methyldiethanolamine and L-Arginine Using the Stopped-Flow Technique. <i>Processes</i> , 2019 , 7, 81	2.9	5
58	Carbamate Formation and Amine Protonation Constants in 2-Amino-1-Butanolf O2H2O System and Their Temperature Dependences. <i>Journal of Solution Chemistry</i> , 2018 , 47, 262-277	1.8	5
57	New Reactive Extraction Based Reclaiming Technique for Amines Used in Carbon Dioxide Capture Process from Industrial Flue Gases. <i>Industrial & Engineering Chemistry Research</i> , 2016 , 55, 5006-5018	8 3.9	5
56	Life cycle assessment of a hypothetical Canadian pre-combustion carbon dioxide capture process system. <i>Carbon Management</i> , 2014 , 5, 519-534	3.3	5
55	Part 8: Post-combustion CO2 capture: pilot plant operation issues. <i>Carbon Management</i> , 2013 , 4, 215-23	3 .3	5
54	The Roles of O2 and SO2 in the Degradation of Monoethanolamine during CO2 Absorption from Industrial Flue Gas Streams 2006 ,		5
53	Cogeneration concepts for CO2 separation from power plants for enhanced oil recovery applications. <i>Energy Conversion and Management</i> , 1995 , 36, 563-566	10.6	5
52	Evaluating Energy-Efficient Solutions of CO2 Capture within Tri-solvent MEA+BEA+AMP within 0.1+2+20.5+2+2 mol/L Combining Heterogeneous AcidBase Catalysts. <i>Industrial &</i> Engineering Chemistry Research, 2021 , 60, 7352-7366	3.9	5
51	Eley-Rideal model of heterogeneous catalytic carbamate formation based on CO-MEA absorptions with CaCO, MgCO and BaCO. <i>Royal Society Open Science</i> , 2019 , 6, 190311	3.3	4
50	The study of CO2 absorption intensification using porous media material in aqueous AMP solution. <i>Petroleum</i> , 2018 , 4, 90-94	4.1	4
49	Human health risks of post- and oxy-fuel combustion carbon dioxide capture technologies: Hypothetically modeled scenarios. <i>International Journal of Greenhouse Gas Control</i> , 2016 , 47, 279-290	4.2	4
48	Investigation of mass transfer coefficient of CO2 absorption into amine solutions in hollow fiber membrane contactor. <i>Energy Procedia</i> , 2017 , 114, 621-626	2.3	4
47	Study of Ion Speciation of CO2 Absorption into Aqueous 1-Dimethylamino-2-propanol Solution Using the NMR Technique. <i>Industrial & Engineering Chemistry Research</i> , 2017 , 56, 8697-8704	3.9	4
46	Part 4b: Application of data modeling and analysis techniques to the CO2 capture process system. <i>Carbon Management</i> , 2012 , 3, 81-94	3.3	4
45	An intelligent system for monitoring and diagnosis of the CO2 capture process. <i>Expert Systems With Applications</i> , 2011 , 38, 7935-7946	7.8	4
44	Simultaneous production of electricity, steam, and CO2 from small gas-fired cogeneration plants for enhanced oil recovery. <i>Energy Conversion and Management</i> , 1997 , 38, S223-S228	10.6	4

43	Numerical Simulation of Combustion of Natural Gas Mixed with Hydrogen in Gas Boilers. <i>Energies</i> , 2021 , 14, 6883	3.1	4	
42	Technology development and applications of artificial intelligence for post-combustion carbon dioxide capture: Critical literature review and perspectives. <i>International Journal of Greenhouse Gas Control</i> , 2021 , 108, 103307	4.2	4	
41	Predictions of equilibrium solubility and mass transfer coefficient for CO2 absorption into aqueous solutions of 4-diethylamino-2-butanol using artificial neural networks. <i>Petroleum</i> , 2020 , 6, 385-391	4.1	4	
40	A Novel Model for Correlation and Predication of the Equilibrium CO 2 Solubility in Seven Tertiary Solvents. <i>Energy Procedia</i> , 2017 , 105, 4476-4481	2.3	3	
39	The Research on the Coordinative and Competitive Relationship between MEA and DEA Absorbing CO2 into Aqueous Blended Amine Solution. <i>Energy Procedia</i> , 2017 , 114, 1883-1889	2.3	3	
38	Solvent Extraction of Degradation Products in Amine Absorption Solution for CO2 Capture in Flue Gases from Coal Combustion: Effect of Amines. <i>Energy Procedia</i> , 2017 , 114, 1980-1985	2.3	3	
37	Development of Polymer from High Internal Phase Emulsion for CO2 Adsorption. <i>Energy Procedia</i> , 2013 , 37, 151-158	2.3	3	
36	Study of Physical and Chemical Resistance of Elastomers in Aqueous MEA and MEA+CO2 Solutions during the Carbon Dioxide Absorption Process. <i>Energy Procedia</i> , 2014 , 63, 1415-1423	2.3	3	
35	Applications of three data analysis techniques for modeling the carbon dioxide capture process 2010 ,		3	
34	Carbon dioxide production from coal-fired power plants for enhanced oil recovery: A feasibility study in Western Canada. <i>Energy</i> , 1996 , 21, 857-869	7.9	3	
33	ROCK TYPE DETERMINATION OF A CARBONATE RESERVOIR USING VARIOUS APPROACHES: A CASE STUDY. <i>Special Topics and Reviews in Porous Media</i> , 2011 , 2, 293-300	2.5	3	
32	Study of Boordinative effectI within bi-blended amine MEA + AMP and MEA + BEA at 0.1 + 20.5 + 2 mol/L with absorption Besorption parameter analyses. <i>Asia-Pacific Journal of Chemical Engineering</i> , 2021 , 16, e2645	1.3	3	
31	Studies of Crosslinked Quaternized Biopolymer for Separation of Heat Stable Salts in Amine Absorption Solution for Carbon Dioxide Capture. <i>Energy Procedia</i> , 2013 , 37, 1202-1208	2.3	2	
30	Study of Carbon Dioxide Adsorption for Fossil Fuel based Power Plant Flue Gas Application Using Quaternized Biopolymer. <i>Energy Procedia</i> , 2013 , 37, 159-166	2.3	2	
29	Synthesis of CuP/SnO composites for degradation of tetracycline hydrochloride in wastewater <i>RSC Advances</i> , 2021 , 11, 33471-33480	3.7	2	
28	Absorption kinetics of CO2 in novel formulated 2-amino-2-methyl-1-propanol and N-methyl-4-piperidinol solvent. <i>Energy Reports</i> , 2020 , 6, 143-150	4.6	2	
27	The optimization and thermodynamic and economic estimation analysis for CO2 compression-liquefaction process of CCUS system using LNG cold energy. <i>Energy</i> , 2021 , 236, 121376	7.9	2	
26	Structure A ctivity Correlation Analyses of MEA + 3A1P/MAE Isomers with a Coordinative Effect Study. <i>Industrial & Engineering Chemistry Research</i> , 2022 , 61, 3091-3103	3.9	2	

25	Kinetics of Carbon Dioxide (CO2) with DiethylenetriamineinNon-aqueous Solvents Using Stopped-flow Technique. <i>Energy Procedia</i> , 2017 , 114, 1869-1876	2.3	1
24	Laboratory measurements of solubility and swelling factor for CO2/Brine and CO2/heavy oil binary systems under low-medium pressure and temperature. <i>Canadian Journal of Chemical Engineering</i> , 2019 , 97, 2137-2145	2.3	1
23	Effect of Number of Hydroxyl Group in Sterically Hindered Alkanolamine on CO2 Capture Activity. Energy Procedia, 2017 , 114, 1966-1972	2.3	1
22	Experiments and Modeling of Vapor-liquid Equilibrium in DEEA-CO2-H2O System. <i>Energy Procedia</i> , 2017 , 114, 1530-1537	2.3	1
21	The CO absorption and desorption analysis of tri-solvent MEA + EAE + AMP compared with MEA + BEA + AMP along with "coordination effects" evaluation <i>Environmental Science and Pollution Research</i> , 2022 , 1	5.1	1
20	Density, viscosity, physical CO2 diffusivity, and CO2 absorption capacity of novel blended N-methyl-4-piperidinol and piperazine solvent. <i>Energy Reports</i> , 2021 , 7, 844-853	4.6	1
19	Experimental investigations and developing multilayer neural network models for prediction of CO2 solubility in aqueous MDEA/PZ and MEA/MDEA/PZ blends 2021 , 11, 712-733		1
18	A Comparative Study of Human Health Impacts Due to Heavy Metal Emissions from a Conventional Lignite Coal-Fired Electricity Generation Station, with Post-Combustion, and Oxy-Fuel Combustion Capture Technologies 2016 ,		1
17	Post-combustion CO2 Capture Technology. <i>SpringerBriefs in Petroleum Geoscience & Engineering</i> , 2019 ,	0.1	1
16	Artificial neural network prediction of transport properties of novel MPDL-based solvents for post combustion carbon capture. <i>Energy Reports</i> , 2022 , 8, 88-94	4.6	1
15	CO2-capture research and Clean Energy Technologies Research Institute (CETRI) of University of Regina, Canada: history, current status and future development. <i>Clean Energy</i> , 2022 , 6, 883-890	4.7	1
14	Simulation Studies of Process Improvement of Three-Tower Low-Temperature Distillation Process to Minimize Energy Consumption for Separation of Produced Gas of CO2-Enhanced Oil Recovery (EOR). Canadian Journal of Chemical Engineering, 2015, 93, 1266-1274	2.3	O
13	Applied Artificial Neural Network for Hydrogen Sulfide Solubility in Natural Gas Purification. <i>ACS Omega</i> , 2021 , 6, 31321-31329	3.9	O
12	Catalytic Performance and Mechanism of MesoMicroporous Material &BA-15-Supported FeZr Catalysts for CO2 Desorption in CO2-Loaded Aqueous Amine Solution. <i>Industrial & Engineering Chemistry Research</i> , 2021 , 60, 2698-2709	3.9	O
11	Comparative desorption energy consumption of post-combustion CO2 capture integrated with mechanical vapor recompression technology. <i>Separation and Purification Technology</i> , 2022 , 294, 121202	8.3	O
10	The Study of Ion Speciation of CO2 Absorption into Aqueous 1-Dimethylamino-2-propanol Solution Using the NMR Technique. <i>Energy Procedia</i> , 2017 , 114, 1803-1810	2.3	
9	Comparison of Liquid Phase Ion Speciation in DEAB-CO2-H2O System with IPAB-CO2-H2O System Using 13C NMR Techniques. <i>Energy Procedia</i> , 2014 , 63, 1919-1926	2.3	
8	Density, Viscosity, Refractive Index and Heat capacity Studies of Aqueous Ethylaminoethanol Solutions at 293.15 to 323.15 K. <i>Energy Procedia</i> , 2017 , 114, 1523-1529	2.3	

LIST OF PUBLICATIONS

7	Mass Transfer Studies on Catalyst Aided Desorption Using a Blended Solvent in a Post Combustion Capture Plant. <i>Energy Procedia</i> , 2017 , 114, 1506-1513	2.3
6	KNOWLEDGE ENGINEERING OF A MONITORING AND CONTROL DECISION SUPPORT SYSTEM. International Journal of Software Engineering and Knowledge Engineering, 2000 , 10, 301-318	1
5	Pilot and Demonstration Plants. SpringerBriefs in Petroleum Geoscience & Engineering, 2019, 47-51	0.1
4	Solvent Management. SpringerBriefs in Petroleum Geoscience & Engineering, 2019, 29-45	0.1
3	Environmental Performance of Hypothetical Canadian Pre-Combustion Carbon Dioxide Capture Processes Using Life-Cycle Techniques. <i>Technologies</i> , 2016 , 4, 9	2.4
2	Introduction and Background Information. <i>SpringerBriefs in Petroleum Geoscience & Engineering</i> , 2019 , 1-5	0.1
1	Solvent Property of Amine Based Solvents. <i>SpringerBriefs in Petroleum Geoscience & Engineering</i> , 2019 , 7-22	0.1