Paitoon Tontiwachwuthikul

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7270283/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pilot Plant Studies of the CO2Capture Performance of Aqueous MEA and Mixed MEA/MDEA Solvents at the University of Regina CO2Capture Technology Development Plant and the Boundary Dam CO2Capture Demonstration Plant. Industrial & Engineering Chemistry Research, 2006, 45, 2414-2420.	3.7	480
2	Recent progress and new developments in post-combustion carbon-capture technology with amine based solvents. International Journal of Greenhouse Gas Control, 2015, 40, 26-54.	4.6	403
3	Photocatalytic Process for CO2Emission Reduction from Industrial Flue Gas Streams. Industrial & Engineering Chemistry Research, 2006, 45, 2558-2568.	3.7	311
4	Kinetics of the reactive absorption of carbon dioxide in high CO2-loaded, concentrated aqueous monoethanolamine solutions. Chemical Engineering Science, 2003, 58, 5195-5210.	3.8	308
5	Corrosion Behavior of Carbon Steel in the CO2Absorption Process Using Aqueous Amine Solutions. Industrial & Engineering Chemistry Research, 1999, 38, 3917-3924.	3.7	278
6	Using polypropylene and polytetrafluoroethylene membranes in a membrane contactor for CO2 absorption. Journal of Membrane Science, 2006, 277, 99-107.	8.2	197
7	The genetic algorithm based back propagation neural network for MMP prediction in CO2-EOR process. Fuel, 2014, 126, 202-212.	6.4	196
8	Comparing membrane resistance and absorption performance of three different membranes in a gas absorption membrane contactor. Separation and Purification Technology, 2009, 65, 290-297.	7.9	183
9	Review on current advances, future challenges and consideration issues for post-combustion CO2 capture using amine-based absorbents. Chinese Journal of Chemical Engineering, 2016, 24, 278-288.	3.5	181
10	Interfacial Tensions of the Crude Oil + Reservoir Brine + CO2Systems at Pressures up to 31 MPa and Temperatures of 27 °C and 58 °C. Journal of Chemical & Engineering Data, 2005, 50, 1242-1249.	1.9	178
11	CO2 absorption by NaOH, monoethanolamine and 2-amino-2-methyl-1-propanol solutions in a packed column. Chemical Engineering Science, 1992, 47, 381-390.	3.8	171
12	Artificial intelligence for monitoring and supervisory control of process systems. Engineering Applications of Artificial Intelligence, 2007, 20, 115-131.	8.1	171
13	Comparing the Absorption Performance of Packed Columns and Membrane Contactors. Industrial & Engineering Chemistry Research, 2005, 44, 5726-5732.	3.7	160
14	Catalytic and non catalytic solvent regeneration during absorption-based CO2 capture with single and blended reactive amine solvents. International Journal of Greenhouse Gas Control, 2014, 26, 39-50.	4.6	154
15	A study of structure–activity relationships of commercial tertiary amines for post-combustion CO2 capture. Applied Energy, 2016, 184, 219-229.	10.1	135
16	Solubility of carbon dioxide in 2-amino-2-methyl-1-propanol solutions. Journal of Chemical & Engineering Data, 1991, 36, 130-133.	1.9	134
17	Reaction Kinetics of CO2in Aqueous Ethylenediamine, Ethyl Ethanolamine, and Diethyl Monoethanolamine Solutions in the Temperature Range of 298â^'313 K, Using the Stopped-Flow Technique. Industrial & Engineering Chemistry Research, 2007, 46, 4426-4434.	3.7	134
18	Analysis of Monoethanolamine and Its Oxidative Degradation Products during CO2Absorption from Flue Gases:Â A Comparative Study of GC-MS, HPLC-RID, and CE-DAD Analytical Techniques and Possible Optimum Combinations. Industrial & Engineering Chemistry Research, 2006, 45, 2437-2451.	3.7	131

#	Article	IF	CITATIONS
19	Kinetics of the Absorption of CO2into Mixed Aqueous Loaded Solutions of Monoethanolamine and Methyldiethanolamine. Industrial & Engineering Chemistry Research, 2006, 45, 2608-2616.	3.7	129
20	Comprehensive mass transfer and reaction kinetics studies of CO2 absorption into aqueous solutions of blended MDEA–MEA. Chemical Engineering Journal, 2012, 209, 501-512.	12.7	125
21	Behavior of the Mass-Transfer Coefficient of Structured Packings in CO2Absorbers with Chemical Reactions. Industrial & Engineering Chemistry Research, 1999, 38, 2044-2050.	3.7	123
22	Integration of post-combustion capture and storage into a pulverized coal-fired power plant. International Journal of Greenhouse Gas Control, 2010, 4, 499-510.	4.6	122
23	Carbon dioxide (CO2) capture: Absorption-desorption capabilities of 2-amino-2-methyl-1-propanol (AMP), piperazine (PZ) and monoethanolamine (MEA) tri-solvent blends. Journal of Natural Gas Science and Engineering, 2016, 33, 742-750.	4.4	122
24	Mass Transfer Coefficients and Correlation for CO2Absorption into 2-Amino-2-methyl-1-propanol (AMP) Using Structured Packing. Industrial & Engineering Chemistry Research, 1998, 37, 569-575.	3.7	117
25	Wettability Determination of the Reservoir Brineâ^Reservoir Rock System with Dissolution of CO2 at High Pressures and Elevated Temperatures. Energy & Fuels, 2008, 22, 504-509.	5.1	117
26	Experimental study on the solvent regeneration of a CO ₂ â€loaded MEA solution using single and hybrid solid acid catalysts. AICHE Journal, 2016, 62, 753-765.	3.6	115
27	Reducing energy consumption of CO2 desorption in CO2-loaded aqueous amine solution using Al2O3/HZSM-5 bifunctional catalysts. Applied Energy, 2018, 229, 562-576.	10.1	110
28	Enhanced light oil recovery from tight formations through CO 2 huff â€~n' puff processes. Fuel, 2015, 154, 35-44.	6.4	108
29	Screening tests of aqueous alkanolamine solutions based on primary, secondary, and tertiary structure for blended aqueous amine solution selection in post combustion CO 2 capture. Chemical Engineering Science, 2017, 170, 574-582.	3.8	108
30	Kinetics of sulfur dioxide- and oxygen-induced degradation of aqueous monoethanolamine solution during CO2 absorption from power plant flue gas streams. International Journal of Greenhouse Gas Control, 2009, 3, 133-142.	4.6	105
31	CO2 stripping from monoethanolamine using a membrane contactor. Journal of Membrane Science, 2011, 376, 110-118.	8.2	105
32	Practical experience in post-combustion CO2 capture using reactive solvents in large pilot and demonstration plants. International Journal of Greenhouse Gas Control, 2015, 40, 6-25.	4.6	105
33	Mathematical modelling of mass-transfer and hydrodynamics in CO2 absorbers packed with structured packings. Chemical Engineering Science, 2003, 58, 4037-4053.	3.8	102
34	Mass Transfer Performance of CO ₂ Absorption into Aqueous Solutions of 4-Diethylamino-2-butanol, Monoethanolamine, and <i>N</i> -Methyldiethanolamine. Industrial & Engineering Chemistry Research, 2012, 51, 6470-6479.	3.7	98
35	Solubilities of Carbon Dioxide in Polyethylene Glycol Ethers. Canadian Journal of Chemical Engineering, 2005, 83, 358-361.	1.7	96
36	Heat duty, heat of absorption, sensible heat and heat of vaporization of 2–Amino–2–Methyl–1–Propanol (AMP), Piperazine (PZ) and Monoethanolamine (MEA) tri–solvent blend for carbon dioxide (CO2) capture. Chemical Engineering Science, 2017, 170, 26-35.	3.8	96

#	Article	IF	CITATIONS
37	Effect of internal coagulant on effectiveness of polyvinylidene fluoride membrane for carbon dioxide separation and absorption. Journal of Membrane Science, 2008, 311, 153-158.	8.2	94
38	Synthesis, solubilities, and cyclic capacities of amino alcohols for CO2 capture from flue gas streams. Energy Procedia, 2009, 1, 1327-1334.	1.8	94
39	Reducing Energy Penalty of CO ₂ Capture Using Fe Promoted SO ₄ ^{2–} /ZrO ₂ /MCM-41 Catalyst. Environmental Science & Technology, 2019, 53, 6094-6102.	10.0	94
40	NMR Studies of Amine Species in MEAâ^'CO ₂ â^'H ₂ O System: Modification of the Model of Vaporâ^'Liquid Equilibrium (VLE). Industrial & Engineering Chemistry Research, 2009, 48, 2717-2720.	3.7	90
41	Carbon dioxide (CO2) capture performance of aqueous tri-solvent blends containing 2-amino-2-methyl-1-propanol (AMP) and methyldiethanolamine (MDEA) promoted by diethylenetriamine (DETA). International Journal of Greenhouse Gas Control, 2016, 53, 292-304.	4.6	88
42	Reaction Kinetics of CO ₂ in Aqueous 1-Amino-2-Propanol, 3-Amino-1-Propanol, and Dimethylmonoethanolamine Solutions in the Temperature Range of 298â^313 K Using the Stopped-Flow Technique. Industrial & Engineering Chemistry Research, 2008, 47, 2213-2220.	3.7	83
43	Investigation of Mass-Transfer Performance for CO ₂ Absorption into Diethylenetriamine (DETA) in a Randomly Packed Column. Industrial & Engineering Chemistry Research, 2012, 51, 12058-12064.	3.7	83
44	Solubility, absorption heat and mass transfer studies of CO2 absorption into aqueous solution of 1-dimethylamino-2-propanol. Fuel, 2015, 144, 121-129.	6.4	82
45	Synthesis of new amines for enhanced carbon dioxide (CO2) capture performance: The effect of chemical structure on equilibrium solubility, cyclic capacity, kinetics of absorption and regeneration, and heats of absorption and regeneration. Separation and Purification Technology, 2016, 167, 97-107.	7.9	82
46	Experimental study on mass transfer and prediction using artificial neural network for CO2 absorption into aqueous DETA. Chemical Engineering Science, 2013, 100, 195-202.	3.8	81
47	Volumetric Properties and Viscosities for AqueousN-Methyl-2-pyrrolidone Solutions from 25 °C to 70 °C. Journal of Chemical & Engineering Data, 2004, 49, 231-234.	1.9	79
48	Interfacial Interactions between Reservoir Brine and CO2at High Pressures and Elevated Temperatures. Energy & Fuels, 2005, 19, 216-223.	5.1	79
49	Evaluation of the heat duty of catalyst-aided amine-based post combustion CO 2 capture. Chemical Engineering Science, 2017, 170, 48-57.	3.8	78
50	Correlations for Equilibrium Solubility of Carbon Dioxide in Aqueous 4-(Diethylamino)-2-butanol Solutions. Industrial & Engineering Chemistry Research, 2011, 50, 14008-14015.	3.7	75
51	Analysis of CO 2 solubility and absorption heat into 1-dimethylamino-2-propanol solution. Chemical Engineering Science, 2017, 170, 3-15.	3.8	75
52	Investigation of CO ₂ Regeneration in Single and Blended Amine Solvents with and without Catalyst. Industrial & Engineering Chemistry Research, 2017, 56, 7656-7664.	3.7	75
53	A comparative kinetics study of CO ₂ absorption into aqueous DEEA/MEA and DMEA/MEA blended solutions. AICHE Journal, 2018, 64, 1350-1358.	3.6	72
54	Experimental and Theoretical Determination of Equilibrium Interfacial Tension for the Solvent(s)–CO ₂ –Heavy Oil Systems. Energy & Fuels, 2012, 26, 1776-1786.	5.1	71

#	Article	IF	CITATIONS
55	Zeolite catalyst-aided tri-solvent blend amine regeneration: An alternative pathway to reduce the energy consumption in amine-based CO2 capture process. Applied Energy, 2019, 240, 827-841.	10.1	71
56	Wettability Determination of the Crude Oilâ^'Reservoir Brineâ^'Reservoir Rock System with Dissolution of CO2at High Pressures and Elevated Temperatures. Energy & amp; Fuels, 2008, 22, 2362-2371.	5.1	70
57	A mathematical model for gas absorption membrane contactors that studies the effect of partially wetted membranes. Journal of Membrane Science, 2010, 347, 228-239.	8.2	70
58	Experimental analyses of mass transfer and heat transfer of post-combustion CO2 absorption using hybrid solvent MEA–MeOH in an absorber. Chemical Engineering Journal, 2015, 260, 11-19.	12.7	69
59	Volumetric Properties and Viscosities for Aqueous AMP Solutions from 25 °C to 70 °C. Journal of Chemical & Engineering Data, 2003, 48, 551-556.	1.9	66
60	Experimental studies of regeneration heat duty for CO2 desorption from diethylenetriamine (DETA) solution in a stripper column packed with Dixon ring random packing. Fuel, 2014, 136, 261-267.	6.4	66
61	Advancement and new perspectives of using formulated reactive amine blends for post-combustion carbon dioxide (CO2) capture technologies. Petroleum, 2017, 3, 10-36.	2.8	66
62	Investigation of Low-Toxic Organic Corrosion Inhibitors for CO2Separation Process Using Aqueous MEA Solvent. Industrial & Engineering Chemistry Research, 2001, 40, 4771-4777.	3.7	65
63	Kinetics of CO ₂ absorption into a novel 1â€diethylaminoâ€2â€propanol solvent using stoppedâ€flow technique. AICHE Journal, 2014, 60, 3502-3510.	3.6	64
64	An improved fast screening method for single and blended amine-based solvents for post-combustion CO2 capture. Separation and Purification Technology, 2016, 169, 279-288.	7.9	64
65	13C NMR Spectroscopy of a Novel Amine Species in the DEAB–CO2–H2O system: VLE Model. Industrial & Engineering Chemistry Research, 2012, 51, 8608-8615.	3.7	63
66	Part 5b: Solvent chemistry: reaction kinetics of CO ₂ absorption into reactive amine solutions. Carbon Management, 2012, 3, 201-220.	2.4	60
67	Techno-economic analysis of CO2 capture from a 1.2 million MTPA cement plant using AMP-PZ-MEA blend. International Journal of Greenhouse Gas Control, 2018, 78, 400-412.	4.6	59
68	Catalytic performance and mechanism of SO42â^'/ZrO2/SBA-15 catalyst for CO2 desorption in CO2-loaded monoethanolamine solution. Applied Energy, 2020, 259, 114179.	10.1	58
69	Comparative Mass Transfer Performance Studies of CO ₂ Absorption into Aqueous Solutions of DEAB and MEA. Industrial & Engineering Chemistry Research, 2010, 49, 2857-2863.	3.7	57
70	Analysis of CO2 equilibrium solubility of seven tertiary amine solvents using thermodynamic and ANN models. Fuel, 2019, 249, 61-72.	6.4	56
71	Comparative studies of heat duty and total equivalent work of a new heat pump distillation with split flow process, and conventional baseline process for CO2 capture using monoethanolamine. International Journal of Greenhouse Gas Control, 2014, 24, 87-97.	4.6	55
72	Rheological properties study of foam fracturing fluid using CO 2 and surfactant. Chemical Engineering Science, 2017, 170, 720-730.	3.8	55

#	Article	IF	CITATIONS
73	Amine-based CO2 capture aided by acid-basic bifunctional catalyst: Advancement of amine regeneration using metal modified MCM-41. Chemical Engineering Journal, 2020, 383, 123077.	12.7	55
74	Rigorous Model for Predicting the Behavior of CO2Absorption into AMP in Packed-Bed Absorption Columns. Industrial & amp; Engineering Chemistry Research, 2006, 45, 2553-2557.	3.7	54
75	SO ₄ ^{2â^'} /ZrO ₂ supported on γâ€Al ₂ O ₃ as a catalyst for CO ₂ desorption from CO ₂ â€loaded monoethanolamine solutions. AICHE Journal, 2018, 64, 3988-4001.	3.6	54
76	Kinetics of the Oxidative Degradation of Aqueous Monoethanolamine in a Flue Gas Treating Unit. Industrial & Engineering Chemistry Research, 2001, 40, 3445-3450.	3.7	52
77	Study of cyclic CO2 injection for low-pressure light oil recovery under reservoir conditions. Fuel, 2016, 174, 296-306.	6.4	52
78	Studies of Corrosion and Corrosion Control in a CO2â^'2-Amino-2-methyl-1-propanol (AMP) Environment. Industrial & Engineering Chemistry Research, 1997, 36, 264-269.	3.7	51
79	Parametric studies of carbon dioxide absorption into highly concentrated monoethanolamine solutions. Canadian Journal of Chemical Engineering, 2001, 79, 137-142.	1.7	51
80	Mechanism of formation of heat stable salts (HSSs) and their roles in further degradation of monoethanolamine during CO2 capture from flue gas streams. Energy Procedia, 2011, 4, 591-598.	1.8	51
81	Corrosion Behavior of Carbon Steel in the Monoethanolamineâ "H ₂ 0â "CO ₂ â "O ₂ â "SO ₂ System: Products, Reaction Pathways, and Kinetics. Industrial & Engineering Chemistry Research, 2009, 48, 10169-10179.	3.7	50
82	Studies on corrosion and corrosion inhibitors for amine based solvents for CO2 absorption from power plant flue gases containing CO2, O2 and SO2. Energy Procedia, 2011, 4, 1761-1768.	1.8	50
83	Investigation of the effects of operating parameters on the local mass transfer coefficient and membrane wetting in a membrane gas absorption process. Journal of Membrane Science, 2015, 490, 236-246.	8.2	50
84	Simulation of pilot plant and industrial CO2-MEA absorbers. Separation and Purification Technology, 1993, 7, 47-52.	0.3	47
85	Densities and Viscosities for Binary Mixtures ofN-Methyldiethanolamine + Triethylene Glycol Monomethyl Ether from 25 °C to 70 °C andN-Methyldiethanolamine + Ethanol Mixtures at 40 °C. Journal of Chemical & Engineering Data, 2000, 45, 247-253.	1.9	47
86	Part 5c: Solvent chemistry: solubility of CO ₂ in reactive solvents for post-combustion CO ₂ . Carbon Management, 2012, 3, 467-484.	2.4	47
87	Analysis of reaction kinetics of CO2 absorption into a novel reactive 4-diethylamino-2-butanol solvent. Chemical Engineering Science, 2012, 81, 251-259.	3.8	46
88	Part 1: Design, modeling and simulation of post-combustion CO ₂ capture systems using reactive solvents. Carbon Management, 2011, 2, 265-288.	2.4	45
89	Effects of flue gas composition on carbon steel (1020) corrosion in MEA-based CO2 capture process. International Journal of Greenhouse Gas Control, 2013, 19, 340-349.	4.6	45
90	Enhancement factor and kinetics of CO2 capture by MEA-methanol hybrid solvents. Energy Procedia, 2009, 1, 95-102.	1.8	44

#	Article	IF	CITATIONS
91	Analysis of Mass Transfer Performance of Monoethanolamine-Based CO ₂ Absorption in a Packed Column Using Artificial Neural Networks. Industrial & Engineering Chemistry Research, 2014, 53, 4413-4423.	3.7	44
92	Artificial neural network models for the prediction of CO2 solubility in aqueous amine solutions. International Journal of Greenhouse Gas Control, 2015, 39, 174-184.	4.6	44
93	Volumetric Properties, Viscosities, and Refractive Indices for Aqueous 2-(Methylamino)ethanol Solutions from (298.15 to 343.15) K. Journal of Chemical & Engineering Data, 2007, 52, 560-565.	1.9	43
94	<scp>Al</scp> models for correlation of physical properties in system of <scp>1DMA2P O₂â€H₂O</scp> . AICHE Journal, 2022, 68, .	3.6	43
95	Mechanistic model for prediction of structured packing mass transfer performance in CO2 absorption with chemical reactions. Chemical Engineering Science, 2000, 55, 3651-3663.	3.8	41
96	Solubility Study of Methane and Ethane in Promising Physical Solvents for Natural Gas Sweetening Operations. Journal of Chemical & Engineering Data, 2006, 51, 64-67.	1.9	41
97	High pressure physical solubility of carbon dioxide (CO ₂) in mixed polyethylene glycol dimethyl ethers (Genosorb 1753). Canadian Journal of Chemical Engineering, 2012, 90, 576-583.	1.7	40
98	Analysis of solubility, absorption heat and kinetics of CO2 absorption into 1-(2-hydroxyethyl)pyrrolidine solvent. Chemical Engineering Science, 2017, 162, 120-130.	3.8	40
99	Kinetics and mechanism study of homogeneous reaction of CO2 and blends of diethanolamine and monoethanolamine using the stopped-flow technique. Chemical Engineering Journal, 2017, 316, 592-600.	12.7	40
100	The analysis of solubility, absorption kinetics of CO ₂ absorption into aqueous 1â€diethylaminoâ€2â€propanol solution. AICHE Journal, 2017, 63, 2694-2704.	3.6	40
101	Mass transfer studies on catalyst-aided CO2 desorption from CO2-loaded amine solution in a post-combustion CO2 capture plant. Chemical Engineering Science, 2017, 170, 508-517.	3.8	38
102	Investigation mechanism of DEA as an activator on aqueous MEA solution for postcombustion CO ₂ capture. AICHE Journal, 2018, 64, 2515-2525.	3.6	38
103	Kinetics and new BrÄ́nsted correlations study of CO2 absorption into primary and secondary alkanolamine with and without steric-hindrance. Separation and Purification Technology, 2020, 233, 115998.	7.9	38
104	A toolset for construction of hybrid intelligent forecasting systems: application for water demand prediction. Advanced Engineering Informatics, 1999, 13, 21-42.	0.5	37
105	An integrated expert system/operations research approach for the optimization of natural gas pipeline operations. Engineering Applications of Artificial Intelligence, 2000, 13, 465-475.	8.1	37
106	Volumetric Properties and Viscosities for Aqueous Diisopropanolamine Solutions from 25 °C to 70 °C. Journal of Chemical & Engineering Data, 2003, 48, 1062-1067.	1.9	37
107	Dynamic Interfacial Tension Method for Measuring Gas Diffusion Coefficient and Interface Mass Transfer Coefficient in a Liquid. Industrial & Engineering Chemistry Research, 2006, 45, 4999-5008.	3.7	37
108	Physicochemical properties of {1-methyl piperazine (1) + water (2)} system at T= (298.15 to 343.15) K and atmospheric pressure. Journal of Chemical Thermodynamics, 2011, 43, 1897-1905.	2.0	35

#	Article	IF	CITATIONS
109	Estimation of Relative Permeability by Assisted History Matching Using the Ensemble Kalman Filter Method. Journal of Canadian Petroleum Technology, 2012, 51, 205-214.	2.3	35
110	Catalytic-CO ₂ -Desorption Studies of DEA and DEA–MEA Blended Solutions with the Aid of Lewis and BrÃ,nsted Acids. Industrial & Engineering Chemistry Research, 2018, 57, 11505-11516.	3.7	35
111	1D NMR Analysis of a Quaternary MEA–DEAB–CO ₂ –H ₂ O Amine System: Liquid Phase Speciation and Vapor–Liquid Equilibria at CO ₂ Absorption and Solvent Regeneration Conditions. Industrial & Engineering Chemistry Research, 2014, 53, 8577-8591.	3.7	34
112	A new model for correlation and prediction of equilibrium CO ₂ solubility in Nâ€methylâ€4â€piperidinol solvent. AICHE Journal, 2017, 63, 3395-3403.	3.6	34
113	CO2 capture efficiency and heat duty of solid acid catalyst-aided CO2 desorption using blends of primary-tertiary amines. International Journal of Greenhouse Gas Control, 2018, 69, 52-59.	4.6	34
114	A comparative study of novel activated AMP using 1,5-diamino-2-methylpentane vs MEA solution for CO2 capture from gas-fired power plant. Fuel, 2018, 234, 1089-1098.	6.4	34
115	Analysis and predictive correlation of mass transfer coefficient <mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si11.gif" overflow="scroll"><mml:mrow><mml:msub><mml:mi>K</mml:mi><mml:mi>G</mml:mi></mml:msub><mml:msub> of blended MDEA-MEA for use in post-combustion CO2 capture. International Journal of Greenhouse</mml:msub></mml:mrow></mmi:math 	ıb 4.6 mml:r	mƁa
116	Gas Control, 2013, 19, 3-12. Density, Viscosity, and N ₂ O Solubility of Aqueous 2-(Methylamino)ethanol Solution. Journal of Chemical & Engineering Data, 2017, 62, 129-140.	1.9	33
117	Influence of Process Parameters on Corrosion Behavior in a Sterically Hindered Amineâ^'CO2 System. Industrial & Engineering Chemistry Research, 1999, 38, 310-315.	3.7	32
118	Life-Cycle Analysis of CO2EOR on EOR and Geological Storage through Economic Optimization and Sensitivity Analysis Using the Weyburn Unit as a Case Studyâ€. Industrial & Engineering Chemistry Research, 2006, 45, 2483-2488.	3.7	32
119	Kinetics of the reaction of carbon dioxide (CO2) with cyclic amines using the stopped-flow technique. Energy Procedia, 2011, 4, 140-147.	1.8	32
120	CO2 absorption kinetics of 4-diethylamine-2-butanol solvent using stopped-flow technique. Separation and Purification Technology, 2014, 136, 81-87.	7.9	32
121	Comprehensive reaction kinetics model of <scp>CO₂</scp> absorption into 1â€dimethylaminoâ€2â€propanol solution. AICHE Journal, 2022, 68, .	3.6	32
122	Mass transfer of CO2 absorption in hybrid MEA-methanol solvents in packed column. Energy Procedia, 2013, 37, 883-889.	1.8	31
123	Modelling the Performance of a CO2Absorber Containing Structured Packing. Industrial & Engineering Chemistry Research, 2006, 45, 2594-2600.	3.7	30
124	Comparison of Overall Gasâ€Phase Mass Transfer Coefficient for CO ₂ Absorption between Tertiary Amines in a Randomly Packed Column. Chemical Engineering and Technology, 2015, 38, 1435-1443.	1.5	30
125	Novel models for correlation of Solubility constant and diffusivity of N2O in aqueous 1-dimethylamino-2-propanol. Chemical Engineering Science, 2019, 203, 86-103.	3.8	30
126	Densities and Viscosities of Triethylene Glycol Monomethyl Ether +Water Solutions in the Temperature Interval 25 °Câ^'80 °C. Journal of Chemical & Engineering Data, 1999, 44, 101-107.	1.9	29

#	Article	IF	CITATIONS
127	Part 3: Corrosion and prevention in post-combustion CO2capture systems. Carbon Management, 2011, 2, 659-675.	2.4	29
128	Studies of the coordination effect of DEA-MEA blended amines (within 1 + 4 to 2 + 3 M) under heterogeneous catalysis by means of absorption and desorption parameters. Separation and Purification Technology, 2020, 236, 116179.	7.9	29
129	Corrosion Behavior of Carbon Steel in the Monoethanolamineâ î'H ₂ 0â îCO ₂ â îO ₂ â îSO ₂ System. Industrial & Engineering Chemistry Research, 2009, 48, 8913-8919.	3.7	28
130	Ensemble-Based Relative Permeability Estimation Using B-Spline Model. Transport in Porous Media, 2010, 85, 703-721.	2.6	28
131	Experimental study of the kinetics of the homogenous reaction of CO2 into a novel aqueous 3-diethylamino-1,2-propanediol solution using the stopped-flow technique. Chemical Engineering Journal, 2015, 270, 485-495.	12.7	28
132	Modified Heterogeneous Catalyst-Aided Regeneration of CO ₂ Capture Amines: A Promising Perspective for a Drastic Reduction in Energy Consumption. ACS Sustainable Chemistry and Engineering, 2020, 8, 9526-9536.	6.7	28
133	Part 6: Solvent recycling and reclaiming issues. Carbon Management, 2012, 3, 485-509.	2.4	27
134	Volumetric Properties and Viscosities for Aqueous Diglycolamine Solutions from 25 °C to 70 °C. Journal of Chemical & Engineering Data, 2001, 46, 56-62.	1.9	26
135	Densities, Viscosities, and Derived Functions of Binary Mixtures:  (Triethylene Glycol Dimethyl Ether +) Tj ETQ Engineering Data, 2005, 50, 1038-1042.	q1 1 0.784 1.9	4314 rgBT 26
136	Solubility and Diffusivity of N ₂ O in Aqueous 4-(Diethylamino)-2-butanol Solutions for Use in Postcombustion CO ₂ Capture. Industrial & Engineering Chemistry Research, 2012, 51, 925-930.	3.7	26
137	Simulation of CO2-Oil Minimum Miscibility Pressure (MMP) for CO2 Enhanced Oil Recovery (EOR) using Neural Networks. Energy Procedia, 2013, 37, 6877-6884.	1.8	26
138	Comprehensive mass transfer and reaction kinetics studies of a novel reactive 4-diethylamino-2-butanol solvent for capturing CO2. Chemical Engineering Science, 2013, 100, 183-194.	3.8	26
139	Process simulation and parametric sensitivity study of CO2 capture from 115†MW coal–fired power plant using MEA–DEA blend. International Journal of Greenhouse Gas Control, 2018, 76, 1-11.	4.6	26
140	Technology development and applications of artificial intelligence for post-combustion carbon dioxide capture: Critical literature review and perspectives. International Journal of Greenhouse Gas Control, 2021, 108, 103307.	4.6	26
141	Part 2: Solvent management: solvent stability and amine degradation in CO ₂ capture processes. Carbon Management, 2011, 2, 551-566.	2.4	25
142	Modeling of the carbon dioxide capture process system using machine intelligence approaches. Engineering Applications of Artificial Intelligence, 2011, 24, 673-685.	8.1	25
143	From neural network to neuro-fuzzy modeling: Applications to the carbon dioxide capture process. Energy Procedia, 2011, 4, 2066-2073.	1.8	25
144	Novel Design for the Nozzle of a Laminar Jet Absorber. Industrial & Engineering Chemistry Research, 2004, 43, 2568-2574.	3.7	24

#	Article	IF	CITATIONS
145	Reaction Kinetics of Carbon Dioxide (CO ₂) with Diethylenetriamine and 1-Amino-2-propanol in Nonaqueous Solvents Using Stopped-Flow Technique. Industrial & Engineering Chemistry Research, 2016, 55, 7307-7317.	3.7	24
146	Physical and transport properties of aqueous amino alcohol solutions for CO2 capture from flue gas streams. Chemical Engineering Research and Design, 2008, 86, 291-295.	5.6	23
147	Part 5a: Solvent chemistry: NMR analysis and studies for amine–CO ₂ –H ₂ O systems with vapor–liquid equilibrium modeling for CO ₂ capture processes. Carbon Management, 2012, 3, 185-200.	2.4	23
148	Experiments and modeling of vapor-liquid equilibrium data in DEEA-CO2-H2O system. International Journal of Greenhouse Gas Control, 2016, 53, 160-168.	4.6	23
149	The history and development of the IEA GHG Weyburn-Midale CO2 Monitoring and Storage Project in Saskatchewan, Canada (the world largest CO2 for EOR and CCS program). Petroleum, 2017, 3, 3-9.	2.8	23
150	Reaction kinetics of carbon dioxide with aqueous solutions of l-Arginine, Glycine & Sarcosine using the stopped flow technique. International Journal of Greenhouse Gas Control, 2017, 63, 47-58.	4.6	23
151	Densities, Viscosities, and Derived Functions of Binary Mixtures:  (Tetraethylene Glycol Dimethyl Ether) Tj E	TQq1_1 0.7 1.9	84314 rgB
152	A life cycle assessment study of a hypothetical Canadian oxy-fuel combustion carbon dioxide capture process. International Journal of Greenhouse Gas Control, 2014, 28, 257-274.	4.6	22
153	1D absorption kinetics modeling of CO2–DEAB–H2O system. International Journal of Greenhouse Gas Control, 2013, 12, 390-398.	4.6	21
154	A Comparative of Life Cycle Assessment of Post-combustion, Pre-combustion and Oxy-fuel CO2 Capture. Energy Procedia, 2014, 63, 7452-7458.	1.8	21
155	Determination of Vapor–Liquid Equilibrium (VLE) Plots of 1-Dimethylamino-2-propanol Solutions Using the pH Method. Industrial & Engineering Chemistry Research, 2015, 54, 4709-4716.	3.7	21
156	Carbon dioxide capture from pulp mill using 2-amino-2-methyl-1-propanol and monoethanolamine blend: Techno-economic assessment of advanced process configuration. Applied Energy, 2019, 250, 1202-1216.	10.1	21
157	Recent progress and new development of post-combustion carbon-capture technology using reactive solvents. Carbon Management, 2011, 2, 261-263.	2.4	20
158	Life Cycle Assessment of Post-combustion CO2 Capture and CO2-Enhanced Oil Recovery Based on the Boundary Dam Integrated Carbon Capture and Storage Demonstration Project in Saskatchewan. Energy Procedia, 2014, 63, 7398-7407.	1.8	20
159	Experimental Studies of Reboiler Heat Duty for CO ₂ Desorption from Triethylenetetramine (TETA) and Triethylenetetramine (TETA) + <i>N</i> -Methyldiethanolamine (MDEA). Industrial & Engineering Chemistry Research, 2015, 54, 8554-8560.	3.7	20
160	Reaction kinetics of carbon dioxide in aqueous blends of N-methyldiethanolamine and glycine using the stopped flow technique. Journal of Natural Gas Science and Engineering, 2016, 33, 186-195.	4.4	20
161	Heterogeneous catalysis of CO2-diethanolamine absorption with MgCO3 and CaCO3 and comparing to non-catalytic CO2-monoethanolamine interactions. Reaction Kinetics, Mechanisms and Catalysis, 2017, 122, 539-555.	1.7	20
162	CO ₂ desorption tests of blended monoethanolamine–diethanolamine solutions to discover novel energy efficient solvents. Asia-Pacific Journal of Chemical Engineering, 2018, 13, e2186.	1.5	20

#	Article	IF	CITATIONS
163	Application of "coordinative effect―into tri-solvent MEA+BEA+AMP blends at concentrations of 0.1 + 2 1 /40.5 + 2 + 2 mol/L with absorption, desorption and mass transfer analyses. International Journal of Greenhouse Gas Control, 2021, 107, 103267.	4.6	20
164	Introduction to a decade of research by the IEAGHG Weyburn–Midale CO2 Monitoring and Storage Project. International Journal of Greenhouse Gas Control, 2013, 16, S1-S4.	4.6	19
165	CO2 capture from lime kiln using AMP-DA2MP amine solvent blend: A pilot plant study. Journal of Environmental Chemical Engineering, 2018, 6, 7102-7110.	6.7	19
166	An improved correlation to determine minimum miscibility pressure of CO2–oil system. Green Energy and Environment, 2020, 5, 97-104.	8.7	19
167	Parametric Process Design and Economic Analysis of Post-Combustion CO2 Capture and Compression for Coal- and Natural Gas-Fired Power Plants. Energies, 2020, 13, 2519.	3.1	19
168	High-Pressure Solubility of Methane (CH ₄) and Ethane (C ₂ H ₆) in Mixed Polyethylene Glycol Dimethyl Ethers (Genosorb 1753) and Its Selectivity in Natural Gas Sweetening Operations. Journal of Chemical & Engineering Data, 2012, 57, 764-775.	1.9	18
169	Molar heat capacities of solvents used in CO ₂ capture: A group additivity and molecular connectivity analysis. Canadian Journal of Chemical Engineering, 2012, 90, 367-376.	1.7	18
170	Investigation of degradation inhibitors on CO2 capture process. Energy Procedia, 2011, 4, 583-590.	1.8	17
171	A life cycle assessment study of a Canadian post-combustion carbon dioxide capture process system. International Journal of Life Cycle Assessment, 2014, 19, 357-369.	4.7	17
172	The development of kinetics model for CO ₂ absorption into tertiary amines containing carbonic anhydrase. AICHE Journal, 2017, 63, 4933-4943.	3.6	17
173	Regeneration Energy Analysis of Aqueous Tri–Solvent Blends Containing 2–Amino–2–Methyl–1–Propanol (AMP), Methyldiethanolamine (MDEA) and Diethylenetriamine (DETA) for Carbon Dioxide (CO2) Capture. Energy Procedia, 2017, 114, 2039-2046.	1.8	17
174	Viability of carbonated water injection (CWI) as a means of secondary oil recovery in heavy oil systems in presence and absence of wormholes: Microfluidic experiments. Fuel, 2019, 249, 286-293.	6.4	17
175	Optimizing Cyclic CO2 Injection for Low- permeability Oil Reservoirs through Experimental Study. , 2013, , .		16
176	High-Pressure Solubility of Carbon Dioxide (CO ₂) in Aqueous 1-Methyl Piperazine Solution. Journal of Chemical & Engineering Data, 2014, 59, 3610-3623.	1.9	16
177	Artificial Neural Networks for Accurate Prediction of Physical Properties of Aqueous Quaternary Systems of Carbon Dioxide (CO ₂)-Loaded 4-(Diethylamino)-2-butanol and Methyldiethanolamine Blended with Monoethanolamine. Industrial & Engineering Chemistry Research. 2016. 55. 11614-11621.	3.7	16
178	Better Choice of Tertiary Alkanolamines for Postcombustion CO ₂ Capture: Structure with Linear Alkanol Chain Instead of Branched. Industrial & Engineering Chemistry Research, 2019, 58, 15344-15352.	3.7	16
179	Evaluating Energy-Efficient Solutions of CO ₂ Capture within Tri-solvent MEA+BEA+AMP within 0.1+2+2–0.5+2+2 mol/L Combining Heterogeneous Acid–Base Catalysts. Industrial & Engineering Chemistry Research, 2021, 60, 7352-7366.	3.7	16
	The CO2 absorption and desorption analysis of tri-solvent MEA + EAE + AMP compared with		

180 MEA + BEA + AMP along with "coordination effects―evaluation. Environmental Science and £ lution 16 Research, 2022, 29, 40686-40700.

#	Article	IF	CITATIONS
181	Mass transfer studies of high performance structured packing for CO2 separation processes. Energy Conversion and Management, 1997, 38, S75-S80.	9.2	15
182	Application of neuro-fuzzy modeling technique for operational problem solving in a CO2 capture process system. International Journal of Greenhouse Gas Control, 2013, 15, 32-41.	4.6	15
183	Modeling of CO ₂ equilibrium solubility in a novel 1â€Diethylaminoâ€2â€Propanol Solvent. AICHE Journal, 2017, 63, 4465-4475.	3.6	15
184	Pipeline Network Modeling and Simulation for Intelligent Monitoring and Control:Â A Case Study of a Municipal Water Supply System. Industrial & Engineering Chemistry Research, 1998, 37, 1033-1044.	3.7	14
185	An application of neuro-fuzzy technology for analysis of the capture process. Fuzzy Sets and Systems, 2010, 161, 2597-2611.	2.7	14
186	Off-gas emission in CO2 capture process using aqueous monoethanolamine solution. Energy Procedia, 2011, 4, 504-511.	1.8	14
187	Thermal and Oxidative Degradation of Aqueous N, N-Diethylethanolamine (DEEA) at Stripping Conditions for CO2 Capture. Energy Procedia, 2014, 63, 1911-1918.	1.8	14
188	Analysis of Reaction Kinetics of CO ₂ Absorption into a Novel 1-(2-Hydroxyethyl)-piperidine Solvent Using Stopped-Flow Technique. Industrial & Engineering Chemistry Research, 2015, 54, 12525-12533.	3.7	14
189	CO2 capture from water-gas shift process plant: Comparative bench-scale pilot plant investigation of MDEA-PZ blend vs novel MDEA activated by 1,5-diamino-2-methylpentane. International Journal of Greenhouse Gas Control, 2019, 82, 218-228.	4.6	14
190	Four nanoscale-extended equations of state: Phase behaviour of confined fluids in shale reservoirs. Fuel, 2019, 250, 88-97.	6.4	14
191	Catalytic Solvent Regeneration Using Hot Water During Amine Based CO2 Capture Process. Energy Procedia, 2014, 63, 266-272.	1.8	13
192	Analysis of equilibrium CO ₂ solubility and thermodynamic models for aqueous 1â€(2â€hydoxyethyl)â€piperidine solution. AICHE Journal, 2019, 65, e16605.	3.6	13
193	Numerical Simulation of Combustion of Natural Gas Mixed with Hydrogen in Gas Boilers. Energies, 2021, 14, 6883.	3.1	13
194	Novel pilot plant technique for sizing gas absorbers with chemical reactions. Canadian Journal of Chemical Engineering, 1989, 67, 602-607.	1.7	12
195	Research and development activities on high efficiency separation process technologies for carbon dioxide removal from industrial sources at University of Regina, Canada. Energy Conversion and Management, 1996, 37, 935-940.	9.2	12
196	Volumetric Properties and Viscosities for Aqueous NFM Solutions from 25 ŰC to 70 ŰC. Journal of Chemical & Engineering Data, 2004, 49, 1724-1726.	1.9	12
197	Amine regeneration tests on MEA, DEA, and MMEA with respect to cabamate stability analyses. Canadian Journal of Chemical Engineering, 2017, 95, 1471-1479.	1.7	12
198	Study on Diffusivity of CO ₂ in Oil-Saturated Porous Media under High Pressure and Temperature. Energy & Fuels, 2019, 33, 11364-11372.	5.1	12

#	Article	IF	CITATIONS
199	The optimization and thermodynamic and economic estimation analysis for CO2 compression-liquefaction process of CCUS system using LNG cold energy. Energy, 2021, 236, 121376.	8.8	12
200	Comparative desorption energy consumption of post-combustion CO2 capture integrated with mechanical vapor recompression technology. Separation and Purification Technology, 2022, 294, 121202.	7.9	12
201	Experimental investigations and the modeling approach for CO2 solubility in aqueous blended amine systems of monoethanolamine, 2-amino-2-methyl-1-propanol, and 2-(butylamino)ethanol. Environmental Science and Pollution Research, 2022, 29, 69402-69423.	5.3	12
202	Mass transfer parameter estimation using optimization technique: Case study in CO ₂ absorption with chemical reaction. Canadian Journal of Chemical Engineering, 1999, 77, 69-73.	1.7	11
203	Evaluation of the Performance of Various Amine Based Solvents in an Optimized Multipurpose Technology Development Pilot Plant. Energy Procedia, 2009, 1, 1543-1548.	1.8	11
204	Membrane contacting process for CO2 desorption. Energy Procedia, 2011, 4, 688-692.	1.8	11
205	A novel reactive 4-diethylamino-2-butanol solvent for capturing CO2 in the aspect of absorption capacity, cyclic capacity, mass transfer, and reaction kinetics. Energy Procedia, 2013, 37, 477-484.	1.8	11
206	Reaction Kinetics of Carbon Dioxide in Aqueous Blends of N-Methyldiethanolamine and L-Arginine Using the Stopped-Flow Technique. Processes, 2019, 7, 81.	2.8	11
207	Expert system for solvent selection of CO2 separation processes. Expert Systems With Applications, 1995, 8, 33-46.	7.6	10
208	Using A Packed-Column Model To Simulate the Performance of A Membrane Absorber. Industrial & Engineering Chemistry Research, 2006, 45, 2580-2585.	3.7	10
209	Eley–Rideal model of heterogeneous catalytic carbamate formation based on CO ₂ –MEA absorptions with CaCO ₃ , MgCO ₃ and BaCO ₃ . Royal Society Open Science, 2019, 6, 190311.	2.4	10
210	Study of Catalytic CO2 Absorption and Desorption with Tertiary Amine DEEA and 1DMA-2P with the Aid of Solid Acid and Solid Alkaline Chemicals. Molecules, 2019, 24, 1009.	3.8	10
211	Experimental investigations and developing multilayer neural network models for prediction of CO ₂ solubility in aqueous MDEA/PZ and MEA/MDEA/PZ blends. , 2021, 11, 712-733.		10
212	A decision support system for solvent selection of CO2 separation processes. Energy Conversion and Management, 1996, 37, 941-946.	9.2	9
213	Computer-Aided Simulation Model for Natural Gas Pipeline Network System Operations. Industrial & Engineering Chemistry Research, 2004, 43, 990-1002.	3.7	9
214	Reaction kinetics of the absorption of carbon dioxide (CO 2) in aqueous solutions of sterically hindered secondary alkanolamines using the stopped-flow technique. Chemical Engineering Science, 2017, 170, 16-25.	3.8	9
215	The Effect of Chemical Structure of Newly Synthesized Tertiary Amines Used for the Post Combustion Capture Process on Carbon dioxide (CO2): Kinetics of CO2 Absorption Using the Stopped-Flow Apparatus and Regeneration, and Heat Input of CO2 Regeneration. Energy Procedia, 2017, 114, 852-859.	1.8	9
216	Structure–Activity Correlation Analyses of MEA + 3A1P/MAE Isomers with a Coordinative Effect Study. Industrial & Engineering Chemistry Research, 2022, 61, 3091-3103.	3.7	9

#	Article	IF	CITATIONS
217	New feasibility study of carbon dioxide production from coal-fired power plants for enhanced oil recovery: A Canadian perspective. Energy Conversion and Management, 1996, 37, 1129-1134.	9.2	8
218	Intelligent diagnostic system for a solar heating system. Expert Systems With Applications, 1999, 16, 157-171.	7.6	8
219	The Roles of O2 and SO2 in the Degradation of Monoethanolamine during CO2 Absorption from Industrial Flue Gas Streams. , 2006, , .		8
220	Kinetics and Reactor Modeling of the Steam Reforming of Methanol over a Mnâ€Promoted Cu/Al Catalyst. Chemical Engineering and Technology, 2015, 38, 2305-2315.	1.5	8
221	New Reactive Extraction Based Reclaiming Technique for Amines Used in Carbon Dioxide Capture Process from Industrial Flue Gases. Industrial & Engineering Chemistry Research, 2016, 55, 5006-5018.	3.7	8
222	Predictions of equilibrium solubility and mass transfer coefficient for CO2 absorption into aqueous solutions of 4-diethylamino-2-butanol using artificial neural networks. Petroleum, 2020, 6, 385-391.	2.8	8
223	Catalytic Performance and Mechanism of Meso–Microporous Material β-SBA-15-Supported FeZr Catalysts for CO ₂ Desorption in CO ₂ -Loaded Aqueous Amine Solution. Industrial & Engineering Chemistry Research, 2021, 60, 2698-2709.	3.7	8
224	Experimental Measurement and Modeling Prediction of Mass Transfer in a Hollow Fiber Membrane Contactor Using Tertiary Amine Solutions for CO ₂ Absorption. Industrial & Engineering Chemistry Research, 2022, 61, 9632-9643.	3.7	8
225	Cogeneration concepts for CO2 separation from power plants for enhanced oil recovery applications. Energy Conversion and Management, 1995, 36, 563-566.	9.2	7
226	On the Numerical Modeling of Gas Absorption into Reactive Liquids in a Laminar Jet Absorber. Canadian Journal of Chemical Engineering, 2003, 81, 604-612.	1.7	7
227	Latest research on fundamental studies of CO2 capture process technologies at the international test centre for CO2 capture. Energy Procedia, 2011, 4, 1707-1712.	1.8	7
228	Ammonia emission kinetics of monoethanolamine (MEA) based CO2 absorption process. International Journal of Greenhouse Gas Control, 2013, 12, 333-340.	4.6	7
229	Part 8: Post-combustion CO ₂ capture: pilot plant operation issues. Carbon Management, 2013, 4, 215-231.	2.4	7
230	Catalytic Solvent Regeneration Using Hot Water During Amine Based CO2 Capture Process. Energy Procedia, 2014, 63, 273-278.	1.8	7
231	Development of Ion Speciation Plots for Three Promising Tertiary Amine–CO ₂ –H ₂ O Systems Using the pH Method and the ¹³ C NMR Method. Energy & Fuels, 2017, 31, 3069-3080.	5.1	7
232	Reaction Kinetics of Carbon Dioxide with 2-Amino-1-butanol in Aqueous Solutions Using a Stopped-Flow Technique. Industrial & Engineering Chemistry Research, 2018, 57, 2797-2804.	3.7	7
233	Study of "coordinative effect―within biâ€blended amine MEA + AMP and MEA + BEA at 0.1 + 2–0.5 + 2 mo with absorption–desorption parameter analyses. Asia-Pacific Journal of Chemical Engineering, 2021, 16, e2645.	ol/L 1.5	7
234	RESERVOIR ROCK TYPE ANALYSIS USING STATISTICAL PORE SIZE DISTRIBUTION. Special Topics and Reviews in Porous Media, 2012, 3, 97-103.	1.1	7

#	Article	IF	CITATIONS
235	Synthesis of Cu ₃ P/SnO ₂ composites for degradation of tetracycline hydrochloride in wastewater. RSC Advances, 2021, 11, 33471-33480.	3.6	7
236	Optimization and energy assessment of technological process for CO2 capture system of natural gas and coal combustion. Energy Reports, 2022, 8, 7612-7627.	5.1	7
237	Simultaneous production of electricity, steam, and CO2 from small gas-fired cogeneration plants for enhanced oil recovery. Energy Conversion and Management, 1997, 38, S223-S228.	9.2	6
238	Liquid distribution of MEA in random and structured packing in a square column. Energy Procedia, 2009, 1, 1155-1161.	1.8	6
239	Physical and Chemical Resistance of Elastomers in Aqueous Monoethanolamine (MEA) and CO ₂ -Loaded MEA Solutions during Postcombustion Carbon Dioxide Capture Processes. Industrial & Engineering Chemistry Research, 2014, 53, 5932-5940.	3.7	6
240	An expert system for monitoring and diagnosis of ammonia emissions from the post-combustion carbon dioxide capture process system. International Journal of Greenhouse Gas Control, 2014, 26, 158-168.	4.6	6
241	A Novel Model for Correlation and Predication of the Equilibrium CO 2 Solubility in Seven Tertiary Solvents. Energy Procedia, 2017, 105, 4476-4481.	1.8	6
242	Preliminary Mass Transfer Performance of CO2 Absorption into AMP-PZ-MEA Ternary Amines. SSRN Electronic Journal, 0, , .	0.4	6
243	Absorption kinetics of CO2 in novel formulated 2-amino-2-methyl-1-propanol and N-methyl-4-piperidinol solvent. Energy Reports, 2020, 6, 143-150.	5.1	6
244	Applications of three data analysis techniques for modeling the carbon dioxide capture process. , 2010, , .		5
245	An intelligent system for monitoring and diagnosis of the CO2 capture process. Expert Systems With Applications, 2011, 38, 7935-7946.	7.6	5
246	Life cycle assessment of a hypothetical Canadian pre-combustion carbon dioxide capture process system. Carbon Management, 2014, 5, 519-534.	2.4	5
247	Human health risks of post- and oxy-fuel combustion carbon dioxide capture technologies: Hypothetically modeled scenarios. International Journal of Greenhouse Gas Control, 2016, 47, 279-290.	4.6	5
248	Effect of Number of Hydroxyl Group in Sterically Hindered Alkanolamine on CO2 Capture Activity. Energy Procedia, 2017, 114, 1966-1972.	1.8	5
249	Carbamate Formation and Amine Protonation Constants in 2-Amino-1-Butanol–CO2–H2O System and Their Temperature Dependences. Journal of Solution Chemistry, 2018, 47, 262-277.	1.2	5
250	The study of CO2 absorption intensification using porous media material in aqueous AMP solution. Petroleum, 2018, 4, 90-94.	2.8	5
251	Laboratory measurements of solubility and swelling factor for CO ₂ /Brine and CO ₂ /heavy oil binary systems under lowâ€medium pressure and temperature. Canadian Journal of Chemical Engineering, 2019, 97, 2137-2145.	1.7	5
252	Artificial neural network prediction of transport properties of novel MPDL-based solvents for post combustion carbon capture. Energy Reports, 2022, 8, 88-94.	5.1	5

#	Article	IF	CITATIONS
253	Part 4b: Application of data modeling and analysis techniques to the CO2capture process system. Carbon Management, 2012, 3, 81-94.	2.4	4
254	Study of Physical and Chemical Resistance of Elastomers in Aqueous MEA and MEA+CO2 Solutions during the Carbon Dioxide Absorption Process. Energy Procedia, 2014, 63, 1415-1423.	1.8	4
255	The Research on the Coordinative and Competitive Relationship between MEA and DEA Absorbing CO2 into Aqueous Blended Amine Solution. Energy Procedia, 2017, 114, 1883-1889.	1.8	4
256	Solvent Extraction of Degradation Products in Amine Absorption Solution for CO2 Capture in Flue Gases from Coal Combustion: Effect of Amines. Energy Procedia, 2017, 114, 1980-1985.	1.8	4
257	Investigation of mass transfer coefficient of CO2 absorption into amine solutions in hollow fiber membrane contactor. Energy Procedia, 2017, 114, 621-626.	1.8	4
258	Study of Ion Speciation of CO ₂ Absorption into Aqueous 1-Dimethylamino-2-propanol Solution Using the NMR Technique. Industrial & Engineering Chemistry Research, 2017, 56, 8697-8704.	3.7	4
259	ROCK TYPE DETERMINATION OF A CARBONATE RESERVOIR USING VARIOUS APPROACHES: A CASE STUDY. Special Topics and Reviews in Porous Media, 2011, 2, 293-300.	1.1	4
260	Density, viscosity, physical CO2 diffusivity, and CO2 absorption capacity of novel blended N-methyl-4-piperidinol and piperazine solvent. Energy Reports, 2021, 7, 844-853.	5.1	4
261	Carbon dioxide production from coal-fired power plants for enhanced oil recovery: A feasibility study in Western Canada. Energy, 1996, 21, 857-869.	8.8	3
262	Development of Polymer from High Internal Phase Emulsion for CO2 Adsorption. Energy Procedia, 2013, 37, 151-158.	1.8	3
263	Post-combustion CO2 Capture Technology. SpringerBriefs in Petroleum Geoscience & Engineering, 2019, , .	0.3	3
264	Applied Artificial Neural Network for Hydrogen Sulfide Solubility in Natural Gas Purification. ACS Omega, 2021, 6, 31321-31329.	3.5	3
265	CO2-capture research and Clean Energy Technologies Research Institute (CETRI) of University of Regina, Canada: history, current status and future development. Clean Energy, 2022, 6, 119-126.	3.2	3
266	A Decision Support System for Filtering and Analysis of Carbon Dioxide Capture Data. , 2007, , .		2
267	Studies of Crosslinked Quaternized Biopolymer for Separation of Heat Stable Salts in Amine Absorption Solution for Carbon Dioxide Capture. Energy Procedia, 2013, 37, 1202-1208.	1.8	2
268	Study of Carbon Dioxide Adsorption for Fossil Fuel based Power Plant Flue Gas Application Using Quaternized Biopolymer. Energy Procedia, 2013, 37, 159-166.	1.8	2
269	Kinetics of Carbon Dioxide (CO2) with DiethylenetriamineinNon-aqueous Solvents Using Stopped-flow Technique. Energy Procedia, 2017, 114, 1869-1876.	1.8	2
270	Simulation Studies of Process Improvement of Threeâ€Tower Lowâ€Temperature Distillation Process to Minimize Energy Consumption for Separation of Produced Gas of CO ₂ â€Enhanced Oil Recovery (EOR). Canadian Journal of Chemical Engineering, 2015, 93, 1266-1274.	1.7	1

#	Article	IF	CITATIONS
271	A Comparative Study of Human Health Impacts Due to Heavy Metal Emissions from a Conventional Lignite Coal-Fired Electricity Generation Station, with Post-Combustion, and Oxy- Fuel Combustion Capture Technologies. , 2016, , .		1
272	Mass Transfer Studies on Catalyst Aided Desorption Using a Blended Solvent in a Post Combustion Capture Plant. Energy Procedia, 2017, 114, 1506-1513.	1.8	1
273	Experiments and Modeling of Vapor-liquid Equilibrium in DEEA-CO2-H2O System. Energy Procedia, 2017, 114, 1530-1537.	1.8	1
274	Introduction and Background Information. SpringerBriefs in Petroleum Geoscience & Engineering, 2019, , 1-5.	0.3	1
275	KNOWLEDGE ENGINEERING OF A MONITORING AND CONTROL DECISION SUPPORT SYSTEM. International Journal of Software Engineering and Knowledge Engineering, 2000, 10, 301-318.	0.8	0
276	Assessing Net and Gross Storage of CO2 in the Subsurface and the Implication for CO2 Credits. , 2006, , \cdot		0
277	Comparison of Liquid Phase Ion Speciation in DEAB-CO2-H2O System with IPAB-CO2-H2O System Using 13C NMR Techniques. Energy Procedia, 2014, 63, 1919-1926.	1.8	0
278	Environmental Performance of Hypothetical Canadian Pre-Combustion Carbon Dioxide Capture Processes Using Life-Cycle Techniques. Technologies, 2016, 4, 9.	5.1	0
279	The Study of Ion Speciation of CO2 Absorption into Aqueous 1-Dimethylamino-2-propanol Solution Using the NMR Technique. Energy Procedia, 2017, 114, 1803-1810.	1.8	0
280	Density, Viscosity, Refractive Index and Heat capacity Studies of Aqueous Ethylaminoethanol Solutions at 293.15 to 323.15 K. Energy Procedia, 2017, 114, 1523-1529.	1.8	0
281	Solvent Property of Amine Based Solvents. SpringerBriefs in Petroleum Geoscience & Engineering, 2019, , 7-22.	0.3	0
282	Solvent Management. SpringerBriefs in Petroleum Geoscience & Engineering, 2019, , 29-45.	0.3	0
283	Evaluating CO2 Desorption Performance in CO2-Loaded MEA Solution with Bifunctional Catalysts. SSRN Electronic Journal, 0, , .	0.4	0