Shuo Su

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7270178/publications.pdf

Version: 2024-02-01

		185998	91712
87	5,370	28	69
papers	citations	h-index	g-index
89	89	89	8801
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Attenuation of Getah Virus by a Single Amino Acid Substitution at Residue 253 of the E2 Protein that Might Be Part of a New Heparan Sulfate Binding Site on Alphaviruses. Journal of Virology, 2022, 96, jvi0175121.	1.5	11
2	Structural and functional analysis of the roles of Influenza C virus membrane proteins in assembly and budding. Journal of Biological Chemistry, 2022, , 101727.	1.6	1
3	Phylogeography Reveals Association between Swine Trade and the Spread of Porcine Epidemic Diarrhea Virus in China and across the World. Molecular Biology and Evolution, 2022, 39, .	3 . 5	35
4	A new distinct geminivirus causes soybean stay-green disease. Molecular Plant, 2022, 15, 927-930.	3.9	17
5	Virome characterization of game animals in China reveals a spectrum of emerging pathogens. Cell, 2022, 185, 1117-1129.e8.	13.5	106
6	Emerging viruses: Cross-species transmission of coronaviruses, filoviruses, henipaviruses, and rotaviruses from bats. Cell Reports, 2022, 39, 110969.	2.9	29
7	Divergent Viruses Discovered in Swine Alter the Understanding of Evolutionary History and Genetic Diversity of the <i>Respirovirus</i> Genus and Related Porcine Parainfluenza Viruses. Microbiology Spectrum, 2022, 10, .	1.2	3
8	Development of Monoclonal Antibodies for Detection of Conserved and Variable Epitopes of Large Protein of Rabies Virus. Viruses, 2021, 13, 220.	1.5	6
9	Expression Profiling and Bioinformatics Analysis of CircRNA in Mice Brain Infected with Rabies Virus. International Journal of Molecular Sciences, 2021, 22, 6537.	1.8	12
10	Melatonin and other indoles show antiviral activities against swine coronaviruses in vitro at pharmacological concentrations. Journal of Pineal Research, 2021, 71, e12754.	3.4	29
11	Emergence and adaptive evolution of influenza D virus. Microbial Pathogenesis, 2021, 160, 105193.	1.3	5
12	Spatiotemporal Associations and Molecular Evolution of Highly Pathogenic Avian Influenza A H7N9 Virus in China from 2017 to 2021. Viruses, 2021, 13, 2524.	1.5	5
13	Emergence and adaptive evolution of Nipah virus. Transboundary and Emerging Diseases, 2020, 67, 121-132.	1.3	15
14	Analysis of the Codon Usage Pattern of HA and NA Genes of H7N9 Influenza A Virus. International Journal of Molecular Sciences, 2020, 21, 7129.	1.8	12
15	Comparison of Severe Acute Respiratory Syndrome Coronavirus 2 Spike Protein Binding to ACE2 Receptors from Human, Pets, Farm Animals, and Putative Intermediate Hosts. Journal of Virology, 2020, 94, .	1.5	148
16	Genomic Epidemiology, Evolution, and Transmission Dynamics of Porcine Deltacoronavirus. Molecular Biology and Evolution, 2020, 37, 2641-2654.	3.5	76
17	One-step multiplex TaqMan probe-based method for real-time PCR detection of four canine diarrhea viruses. Molecular and Cellular Probes, 2020, 53, 101618.	0.9	13
18	Long non-coding RNAs are associated with Seneca Valley virus infection. Veterinary Microbiology, 2020, 246, 108728.	0.8	8

#	Article	IF	CITATIONS
19	Development of a <i>Taq</i> Man-probe-based multiplex real-time PCR for the simultaneous detection of emerging and reemerging swine coronaviruses. Virulence, 2020, 11, 707-718.	1.8	42
20	Epidemiology, genetic diversity and evolution of canine astrovirus. Transboundary and Emerging Diseases, 2020, 67, 2901-2910.	1.3	6
21	COVID-19: Epidemiology, Evolution, and Cross-Disciplinary Perspectives. Trends in Molecular Medicine, 2020, 26, 483-495.	3.5	470
22	Genotyping Porcine Circovirus 3 (PCV-3) Nowadays: Does It Make Sense?. Viruses, 2020, 12, 265.	1.5	47
23	Comprehensive analysis of the ubiquitome in rabies virus-infected brain tissue of Mus musculus. Veterinary Microbiology, 2020, 241, 108552.	0.8	8
24	Adaption and parallel evolution of human-isolated H5 avian influenza viruses. Journal of Infection, 2020, 80, 630-638.	1.7	10
25	Epidemiology and evolutionary analysis of Torque teno sus virus. Veterinary Microbiology, 2020, 244, 108668.	0.8	3
26	Genome Characteristics and Evolution of Pseudorabies Virus Strains in Eastern China from 2017 to 2019. Virologica Sinica, 2019, 34, 601-609.	1.2	26
27	Host-range shift of H3N8 canine influenza virus: a phylodynamic analysis of its origin and adaptation from equine to canine host. Veterinary Research, 2019, 50, 87.	1.1	9
28	Antiviral Effect of Lithium Chloride and Diammonium Glycyrrhizinate on Porcine Deltacoronavirus In Vitro. Pathogens, 2019, 8, 144.	1.2	25
29	Comprehensive codon usage analysis of porcine deltacoronavirus. Molecular Phylogenetics and Evolution, 2019, 141, 106618.	1.2	13
30	Genetic Analysis and Evolutionary Changes of the Torque teno sus Virus. International Journal of Molecular Sciences, 2019, 20, 2881.	1.8	17
31	Genetic analysis and evolutionary changes of Porcine circovirus 2. Molecular Phylogenetics and Evolution, 2019, 139, 106520.	1.2	36
32	Generation of Monoclonal Antibodies against Variable Epitopes of the M Protein of Rabies Virus. Viruses, 2019, 11, 375.	1.5	5
33	Genetic Evolution and Molecular Selection of the HE Gene of Influenza C Virus. Viruses, 2019, 11, 167.	1.5	27
34	A Shift in <i>Porcine Circovirus</i> 3 (PCVâ€3) History Paradigm: Phylodynamic Analyses Reveal an Ancient Origin and Prolonged Undetected Circulation in the Worldwide Swine Population. Advanced Science, 2019, 6, 1901004.	5.6	28
35	Antiviral Activity of Germacrone against Pseudorabies Virus in Vitro. Pathogens, 2019, 8, 258.	1.2	21
36	Interspecies Transmission, Genetic Diversity, and Evolutionary Dynamics of Pseudorabies Virus. Journal of Infectious Diseases, 2019, 219, 1705-1715.	1.9	101

#	Article	IF	Citations
37	Microarray analysis of lncRNA expression in rabies virus infected human neuroblastoma cells. Infection, Genetics and Evolution, 2019, 67, 88-100.	1.0	14
38	Evolutionary changes of the novel Influenza D virus hemagglutinin-esterase fusion gene revealed by the codon usage pattern. Virulence, 2019, 10, 1-9.	1.8	26
39	Genetic diversity of porcine circovirus type 2 in China between 1999–2017. Transboundary and Emerging Diseases, 2019, 66, 599-605.	1.3	19
40	Emergence and adaptation of H3N2 canine influenza virus from avian influenza virus: An overlooked role of dogs in interspecies transmission. Transboundary and Emerging Diseases, 2019, 66, 842-851.	1.3	9
41	Bat-Origin Coronaviruses Expand Their Host Range to Pigs. Trends in Microbiology, 2018, 26, 466-470.	3.5	52
42	Genetic and evolutionary analysis of emerging H3N2 canine influenza virus. Emerging Microbes and Infections, 2018, 7, 1-15.	3.0	34
43	Origin, Genetic Diversity, and Evolutionary Dynamics of Novel Porcine Circovirus 3. Advanced Science, 2018, 5, 1800275.	5.6	92
44	Insights into the genetic and host adaptability of emerging porcine circovirus 3. Virulence, 2018, 9, 1301-1313.	1.8	49
45	Comprehensive Analysis of Codon Usage on Rabies Virus and Other Lyssaviruses. International Journal of Molecular Sciences, 2018, 19, 2397.	1.8	18
46	Multiple Incursions and Recurrent Epidemic Fade-Out of H3N2 Canine Influenza A Virus in the United States. Journal of Virology, 2018, 92, .	1.5	30
47	BECN1-dependent CASP2 incomplete autophagy induction by binding to rabies virus phosphoprotein. Autophagy, 2017, 13, 739-753.	4.3	45
48	One Health strategies for rabies control in rural areas of China. Lancet Infectious Diseases, The, 2017, 17, 365-367.	4.6	31
49	Identification and function analysis of canine stimulator of interferon gene (STING). Microbial Pathogenesis, 2017, 113, 202-208.	1.3	6
50	Clinical Evaluation of Ebola Virus Disease Therapeutics. Trends in Molecular Medicine, 2017, 23, 820-830.	3.5	17
51	Epidemiology, Evolution, and Pathogenesis of H7N9 Influenza Viruses in Five Epidemic Waves since 2013 in China. Trends in Microbiology, 2017, 25, 713-728.	3.5	199
52	Novel Influenza D virus: Epidemiology, pathology, evolution and biological characteristics. Virulence, 2017, 8, 1580-1591.	1.8	101
53	Codon usage bias in the N gene of rabies virus. Infection, Genetics and Evolution, 2017, 54, 458-465.	1.0	19
54	Evolutionary and genetic analysis of the VP2 gene of canine parvovirus. BMC Genomics, 2017, 18, 534.	1.2	38

#	Article	IF	CITATIONS
55	Characterization of H7N2 Avian Influenza Virus in Wild Birds and Pikas in Qinghai-Tibet Plateau Area. Scientific Reports, 2016, 6, 30974.	1.6	18
56	Human infections by avian influenza virus H5N6: Increasing risk by dynamic reassortment?. Infection, Genetics and Evolution, 2016, 42, 46-48.	1.0	2
57	Rabies virus matrix protein induces apoptosis by targeting mitochondria. Experimental Cell Research, 2016, 347, 83-94.	1.2	28
58	Spread of ZIKV and YFV to China: Potential implications. Journal of Infection, 2016, 73, 289-291.	1.7	3
59	Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses. Trends in Microbiology, 2016, 24, 490-502.	3.5	2,243
60	Diagnostic strategies for Ebola virus detection. Lancet Infectious Diseases, The, 2016, 16, 294-295.	4.6	6
61	Genetic variation, pathogenicity, and immunogenicity of highly pathogenic porcine reproductive and respiratory syndrome virus strain XH-GD at different passage levels. Archives of Virology, 2016, 161, 77-86.	0.9	13
62	Identification of the IFN- \hat{l}^2 response in H3N2 canine influenza virus infection. Journal of General Virology, 2016, 97, 18-26.	1.3	9
63	Avian influenza A(H7N9) virus and mixed live poultry–animal markets in Guangdong province: a perfect storm in the making?. Emerging Microbes and Infections, 2015, 4, 1-3.	3.0	12
64	Global and quantitative proteomic analysis of dogs infected by avian-like H3N2 canine influenza virus. Frontiers in Microbiology, 2015, 6, 228.	1.5	20
65	Blocking the PI3K/AKT pathway enhances mammalian reovirus replication by repressing IFN-stimulated genes. Frontiers in Microbiology, 2015, 6, 886.	1.5	29
66	Beagle dogs have low susceptibility to BJ94-like H9N2 avian influenza virus. Infection, Genetics and Evolution, 2015, 31, 216-220.	1.0	5
67	Epidemiology, Evolution, and Recent Outbreaks of Avian Influenza Virus in China. Journal of Virology, 2015, 89, 8671-8676.	1.5	212
68	MERS in South Korea and China: a potential outbreak threat?. Lancet, The, 2015, 385, 2349-2350.	6.3	78
69	The Prevalence of Hepatitis E Virus Infections among Swine, Swine Farmers and the General Population in Guangdong Province, China. PLoS ONE, 2014, 9, e88106.	1.1	33
70	Hepatitis E Virus Serosurvey among Pet Dogs and Cats in Several Developed Cities in China. PLoS ONE, 2014, 9, e98068.	1.1	32
71	Virological and Epidemiological Evidence of Avian Influenza Virus Infections Among Feral Dogs in Live Poultry Markets, China: A Threat to Human Health?. Clinical Infectious Diseases, 2014, 58, 1644-1646.	2.9	48
72	Epidemiological and evolutionary characteristics of the PRRSV in Southern China from 2010 to 2013. Microbial Pathogenesis, 2014, 75, 7-15.	1.3	24

#	Article	IF	CITATIONS
73	A Combination of HA and PA Mutations Enhances Virulence in a Mouse-Adapted H6N6 Influenza A Virus. Journal of Virology, 2014, 88, 14116-14125.	1.5	39
74	Inhibition of porcine reproductive and respiratory syndrome virus by specific siRNA targeting Nsp9 gene. Infection, Genetics and Evolution, 2014, 28, 64-70.	1.0	20
75	First Evidence of H10N8 Avian Influenza Virus Infections among Feral Dogs in Live Poultry Markets in Guangdong Province, China. Clinical Infectious Diseases, 2014, 59, 748-750.	2.9	52
76	Evidence for Subclinical Influenza A(H1N1)pdm09 Virus Infection among Dogs in Guangdong Province, China. Journal of Clinical Microbiology, 2014, 52, 1762-1765.	1.8	23
77	Comparative analysis of microRNAs from the lungs and trachea of dogs (Canis familiaris) infected with canine influenza virus. Infection, Genetics and Evolution, 2014, 21, 367-374.	1.0	21
78	Mutagenesis analysis of porcine reproductive and respiratory syndrome virus nonstructural protein 7. Virus Genes, 2013, 47, 467-477.	0.7	20
79	Short communication: isolation and phylogenetic analysis of an avian-origin H3N2 canine influenza virus in dog shelter, China. Virus Genes, 2013, 46, 554-557.	0.7	5
80	Lack of evidence of avian-to-human transmission of avian influenza A (H5N1) virus among veterinarians, Guangdong, China, 2012. Journal of Clinical Virology, 2013, 56, 365-366.	1.6	10
81	Avian-origin H3N2 canine influenza virus circulating in farmed dogs in Guangdong, China. Infection, Genetics and Evolution, 2013, 14, 444-449.	1.0	29
82	Detection of Antibodies against Avian Influenza Virus Subtypes H7 and H9 among Veterinarians in Guangdong Province, China. Journal of Clinical Microbiology, 2013, 51, 4272-4274.	1.8	4
83	Seroepidemiological Evidence of Avian Influenza A Virus Transmission to Pigs in Southern China. Journal of Clinical Microbiology, 2013, 51, 601-602.	1.8	26
84	Serologic Evidence of Pandemic Influenza Virus H1N1 2009 Infection in Cats in China. Vaccine Journal, 2013, 20, 115-117.	3.2	12
85	Complete Genome Sequence of an Avian-Like H4N8 Swine Influenza Virus Discovered in Southern China. Journal of Virology, 2012, 86, 9542-9542.	1.5	31
86	Complete Genome Sequence of a Novel Avian-Like H3N2 Swine Influenza Virus Discovered in Southern China. Journal of Virology, 2012, 86, 9533-9533.	1,5	17
87	Complete Genome Sequence of an Avian-Origin H3N2 Canine Influenza A Virus Isolated in Farmed Dogs in Southern China. Journal of Virology, 2012, 86, 10238-10238.	1.5	20