List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7270113/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CD47 expression attenuates Ebola virus-induced immunopathology in mice. Antiviral Research, 2022, 197, 105226.	1.9	2
2	Rapid Protection from COVID-19 in Nonhuman Primates Vaccinated Intramuscularly but Not Intranasally with a Single Dose of a Vesicular Stomatitis Virus-Based Vaccine. MBio, 2022, 13, e0337921.	1.8	18
3	Serum from COVID-19 patients early in the pandemic shows limited evidence of cross-neutralization against variants of concern. Scientific Reports, 2022, 12, 3954.	1.6	2
4	VSV-Based Vaccines Reduce Virus Shedding and Viral Load in Hamsters Infected with SARS-CoV-2 Variants of Concern. Vaccines, 2022, 10, 435.	2.1	8
5	Hemorrhagic Fever Viruses: Pathogenesis and Countermeasures. Microorganisms, 2022, 10, 591.	1.6	0
6	Multiple Routes of Antibody-Dependent Enhancement of SARS-CoV-2 Infection. Microbiology Spectrum, 2022, 10, e0155321.	1.2	30
7	K18-hACE2 mice develop respiratory disease resembling severe COVID-19. PLoS Pathogens, 2021, 17, e1009195.	2.1	227
8	Characterization of Ebola Virus Risk to Bedside Providers in an Intensive Care Environment. Microorganisms, 2021, 9, 498.	1.6	1
9	Immunotherapeutics for Ebola Virus Disease: Hope on the Horizon. Biologics: Targets and Therapy, 2021, Volume 15, 79-86.	3.0	9
10	Favipiravir (T-705) Protects IFNARâ^'/â^' Mice against Lethal Zika Virus Infection in a Sex-Dependent Manner. Microorganisms, 2021, 9, 1178.	1.6	2
11	Distinct transcriptional responses to fatal Ebola virus infection in cynomolgus and rhesus macaques suggest species-specific immune responses. Emerging Microbes and Infections, 2021, 10, 1320-1330.	3.0	6
12	Ebola Virus Glycoprotein Domains Associated with Protective Efficacy. Vaccines, 2021, 9, 630.	2.1	7
13	Transcriptional Analysis of Infection With Early or Late Isolates From the 2013–2016 West Africa Ebola Virus Epidemic Does Not Suggest Attenuated Pathogenicity as a Result of Genetic Variation. Frontiers in Microbiology, 2021, 12, 714817.	1.5	3
14	Biodefence research two decades on: worth the investment?. Lancet Infectious Diseases, The, 2021, 21, e222-e233.	4.6	8
15	The Ebola virus soluble glycoprotein contributes to viral pathogenesis by activating the MAP kinase signaling pathway. PLoS Pathogens, 2021, 17, e1009937.	2.1	14
16	Alkhurma haemorrhagic fever virus causes lethal disease in IFNAR ^{-/-} mice. Emerging Microbes and Infections, 2021, 10, 1077-1087.	3.0	2
17	Ebola Virus (Filoviridae). , 2021, , 232-244.		4
18	VSV-EBOV Induces Temporal and Dose-Dependent Transcriptional Responses in Non-human Primates. Frontiers in Virology, 2021, 1, .	0.7	0

ANDREA MARZI

#	Article	IF	CITATIONS
19	Single Dose of a VSV-Based Vaccine Rapidly Protects Macaques From Marburg Virus Disease. Frontiers in Immunology, 2021, 12, 774026.	2.2	32
20	Pathogenic and transcriptomic differences of emerging SARS-CoV-2 variants in the Syrian golden hamster model. EBioMedicine, 2021, 73, 103675.	2.7	26
21	Recombinant protein subunit SARS-CoV-2 vaccines formulated with CoVaccine HTâ,,¢ adjuvant induce broad, Th1 biased, humoral and cellular immune responses in mice. Vaccine: X, 2021, 9, 100126.	0.9	13
22	Optimization of Single-Dose VSV-Based COVID-19 Vaccination in Hamsters. Frontiers in Immunology, 2021, 12, 788235.	2.2	11
23	A live-attenuated viral vector vaccine protects mice against lethal challenge with Kyasanur Forest disease virus. Npj Vaccines, 2021, 6, 152.	2.9	4
24	Kyasanur Forest Disease and Alkhurma Hemorrhagic Fever Virus—Two Neglected Zoonotic Pathogens. Microorganisms, 2020, 8, 1406.	1.6	20
25	A complement component C1q-mediated mechanism of antibody-dependent enhancement of Ebola virus infection. PLoS Neglected Tropical Diseases, 2020, 14, e0008602.	1.3	11
26	A biaryl sulfonamide derivative as a novel inhibitor of filovirus infection. Antiviral Research, 2020, 183, 104932.	1.9	2
27	Development of an Enzyme-Linked Immunosorbent Assay to Determine the Expression Dynamics of Ebola Virus Soluble Clycoprotein during Infection. Microorganisms, 2020, 8, 1535.	1.6	12
28	Mucin-Like Domain of Ebola Virus Glycoprotein Enhances Selective Oncolytic Actions against Brain Tumors. Journal of Virology, 2020, 94, .	1.5	14
29	The Ebola virus glycoprotein and its immune responses across multiple vaccine platforms. Expert Review of Vaccines, 2020, 19, 267-277.	2.0	17
30	Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nature Microbiology, 2020, 5, 562-569.	5.9	2,585
31	A single dose of a vesicular stomatitis virus-based influenza vaccine confers rapid protection against H5 viruses from different clades. Npj Vaccines, 2020, 5, 4.	2.9	41
32	Niemann-Pick C1 Heterogeneity of Bat Cells Controls Filovirus Tropism. Cell Reports, 2020, 30, 308-319.e5.	2.9	22
33	Development of a multiplex microsphere immunoassay for the detection of antibodies against highly pathogenic viruses in human and animal serum samples. PLoS Neglected Tropical Diseases, 2020, 14, e0008699.	1.3	3
34	Recombinant subunit vaccines protect guinea pigs from lethal Ebola virus challenge. Vaccine, 2019, 37, 6942-6950.	1.7	15
35	Single low-dose VSV-EBOV vaccination protects cynomolgus macaques from lethal Ebola challenge. EBioMedicine, 2019, 49, 223-231.	2.7	34
36	Ebola Virus: Pathogenesis and Countermeasure Development. Annual Review of Virology, 2019, 6, 435-458.	3.0	50

#	Article	IF	CITATIONS
37	Antiviral Innate Responses Induced by VSV-EBOV Vaccination Contribute to Rapid Protection. MBio, 2019, 10, .	1.8	33
38	Marburg virus pathogenesis – differences and similarities in humans and animal models. Virology Journal, 2019, 16, 165.	1.4	44
39	Ebola vaccine trials: progress in vaccine safety and immunogenicity. Expert Review of Vaccines, 2019, 18, 1229-1242.	2.0	61
40	Current Ebola Virus Vaccine Progress. BioDrugs, 2019, 33, 9-14.	2.2	32
41	A Single Dose of Modified Vaccinia Ankara expressing Ebola Virus Like Particles Protects Nonhuman Primates from Lethal Ebola Virus Challenge. Scientific Reports, 2018, 8, 864.	1.6	43
42	Filoviruses: Ecology, Molecular Biology, and Evolution. Advances in Virus Research, 2018, 100, 189-221.	0.9	53
43	Distinct Biological Phenotypes of Marburg and Ravn Virus Infection in Macaques. Journal of Infectious Diseases, 2018, 218, S458-S465.	1.9	6
44	Ebola: Lessons on Vaccine Development. Annual Review of Microbiology, 2018, 72, 423-446.	2.9	51
45	The vesicular stomatitis virus-based Ebola virus vaccine: From concept to clinical trials. Human Vaccines and Immunotherapeutics, 2018, 14, 2107-2113.	1.4	107
46	Suspected Exposure to Filoviruses Among People Contacting Wildlife in Southwestern Uganda. Journal of Infectious Diseases, 2018, 218, S277-S286.	1.9	16
47	A VSV-based Zika virus vaccine protects mice from lethal challenge. Scientific Reports, 2018, 8, 11043.	1.6	63
48	Lethal Zika Virus Disease Models in Young and Older Interferon α/β Receptor Knock Out Mice. Frontiers in Cellular and Infection Microbiology, 2018, 8, 117.	1.8	21
49	Monoclonal Antibody Cocktail Protects Hamsters From Lethal Marburg Virus Infection. Journal of Infectious Diseases, 2018, 218, S662-S665.	1.9	10
50	Single-Nucleotide Polymorphisms in Human NPC1 Influence Filovirus Entry Into Cells. Journal of Infectious Diseases, 2018, 218, S397-S402.	1.9	18
51	A Replicating Single-Cycle Adenovirus Vaccine Against Ebola Virus. Journal of Infectious Diseases, 2018, 218, 1883-1889.	1.9	14
52	Ebola virus – prospects for a novel virus-like-particle-expressing modified vaccinia Ankara-based vaccine. Expert Review of Vaccines, 2018, 17, 769-771.	2.0	1
53	Long-Range Polymerase Chain Reaction Method for Sequencing the Ebola Virus Genome From Ecological and Clinical Samples. Journal of Infectious Diseases, 2018, 218, S301-S304.	1.9	8
54	Ebola Virus Infection in Commonly Used Laboratory Mouse Strains. Journal of Infectious Diseases, 2018, 218, S453-S457.	1.9	21

#	Article	lF	CITATIONS
55	Protection Against Marburg Virus Using a Recombinant VSV-Vaccine Depends on T and B Cell Activation. Frontiers in Immunology, 2018, 9, 3071.	2.2	38
56	Recently Identified Mutations in the Ebola Virus-Makona Genome Do Not Alter Pathogenicity in Animal Models. Cell Reports, 2018, 23, 1806-1816.	2.9	54
57	Immunobiology of Ebola and Lassa virus infections. Nature Reviews Immunology, 2017, 17, 195-207.	10.6	95
58	Transcriptomic analysis reveals a previously unknown role for CD8+ T-cells in rVSV-EBOV mediated protection. Scientific Reports, 2017, 7, 919.	1.6	31
59	Ebola and Marburg virus vaccines. Virus Genes, 2017, 53, 501-515.	0.7	70
60	Closer than ever to an Ebola virus vaccine. Expert Review of Vaccines, 2017, 16, 401-402.	2.0	5
61	Ebolaviruses Associated with Differential Pathogenicity Induce Distinct Host Responses in Human Macrophages. Journal of Virology, 2017, 91, .	1.5	58
62	Evaluation of Ebola Virus Countermeasures in Guinea Pigs. Methods in Molecular Biology, 2017, 1628, 283-291.	0.4	3
63	The Merits of Malaria Diagnostics during an Ebola Virus Disease Outbreak. Emerging Infectious Diseases, 2016, 22, 323-6.	2.0	25
64	Nanopore Sequencing as a Rapidly Deployable Ebola Outbreak Tool. Emerging Infectious Diseases, 2016, 22, 331-4.	2.0	175
65	Inactivation of RNA Viruses by Gamma Irradiation: A Study on Mitigating Factors. Viruses, 2016, 8, 204.	1.5	50
66	The Glycoproteins of All Filovirus Species Use the Same Host Factors for Entry into Bat and Human Cells but Entry Efficiency Is Species Dependent. PLoS ONE, 2016, 11, e0149651.	1.1	30
67	A hamster model for Marburg virus infection accurately recapitulates Marburg hemorrhagic fever. Scientific Reports, 2016, 6, 39214.	1.6	30
68	Ebola virus vaccines – reality or fiction?. Expert Review of Vaccines, 2016, 15, 1421-1430.	2.0	29
69	Clinical Chemistry of Patients With Ebola in Monrovia, Liberia. Journal of Infectious Diseases, 2016, 214, S303-S307.	1.9	7
70	Development of an Immunochromatography Assay (QuickNavi-Ebola) to Detect Multiple Species of Ebolaviruses. Journal of Infectious Diseases, 2016, 214, S185-S191.	1.9	18
71	Efficacy of Vesicular Stomatitis Virus–Ebola Virus Postexposure Treatment in Rhesus Macaques Infected With Ebola Virus Makona. Journal of Infectious Diseases, 2016, 214, S360-S366.	1.9	62
72	PlasmodiumParasitemia Associated With Increased Survival in Ebola Virus–Infected Patients. Clinical Infectious Diseases, 2016, 63, 1026-1033.	2.9	42

ANDREA MARZI

#	Article	IF	CITATIONS
73	Discovery of an antibody for pan-ebolavirus therapy. Scientific Reports, 2016, 6, 20514.	1.6	83
74	Cytomegalovirus-based vaccine expressing Ebola virus glycoprotein protects nonhuman primates from Ebola virus infection. Scientific Reports, 2016, 6, 21674.	1.6	54
75	Ebola Laboratory Response at the Eternal Love Winning Africa Campus, Monrovia, Liberia, 2014–2015. Journal of Infectious Diseases, 2016, 214, S169-S176.	1.9	24
76	FcÎ ³ -receptor IIa-mediated Src Signaling Pathway Is Essential for the Antibody-Dependent Enhancement of Ebola Virus Infection. PLoS Pathogens, 2016, 12, e1006139.	2.1	23
77	Delayed Disease Progression in Cynomolgus Macaques Infected with Ebola Virus Makona Strain. Emerging Infectious Diseases, 2015, 21, 1777-1783.	2.0	80
78	Soluble Glycoprotein Is Not Required for Ebola Virus Virulence in Guinea Pigs. Journal of Infectious Diseases, 2015, 212, S242-S246.	1.9	16
79	Loss of Interleukin 1 Receptor Antagonist Enhances Susceptibility to Ebola Virus Infection. Journal of Infectious Diseases, 2015, 212, S329-S335.	1.9	18
80	An updated Ebola vaccine: immunogenic, but will it protect?. Lancet, The, 2015, 385, 2229-2230.	6.3	7
81	Vaccination With a Highly Attenuated Recombinant Vesicular Stomatitis Virus Vector Protects Against Challenge With a Lethal Dose of Ebola Virus. Journal of Infectious Diseases, 2015, 212, S443-S451.	1.9	46
82	An Ebola whole-virus vaccine is protective in nonhuman primates. Science, 2015, 348, 439-442.	6.0	81
83	Interaction between TIM-1 and NPC1 Is Important for Cellular Entry of Ebola Virus. Journal of Virology, 2015, 89, 6481-6493.	1.5	67
84	Next-Generation Sequencing Reveals a Controlled Immune Response to Zaire Ebola Virus Challenge in Cynomolgus Macaques Immunized with Vesicular Stomatitis Virus Expressing Zaire Ebola Virus Glycoprotein (VSVΔG/EBOVgp). Vaccine Journal, 2015, 22, 354-356.	3.2	21
85	Safety of Recombinant VSV–Ebola Virus Vaccine Vector in Pigs. Emerging Infectious Diseases, 2015, 21, 702-704.	2.0	27
86	Lack of Protection Against Ebola Virus from Chloroquine in Mice and Hamsters. Emerging Infectious Diseases, 2015, 21, 1065-1067.	2.0	57
87	VSV-EBOV rapidly protects macaques against infection with the 2014/15 Ebola virus outbreak strain. Science, 2015, 349, 739-742.	6.0	213
88	<i>Stat1</i> -Deficient Mice Are Not an Appropriate Model for Efficacy Testing of Recombinant Vesicular Stomatitis Virus–Based Filovirus Vaccines. Journal of Infectious Diseases, 2015, 212, S404-S409.	1.9	24
89	Rhabdovirus-Based Vaccine Platforms against Henipaviruses. Journal of Virology, 2015, 89, 144-154.	1.5	66
90	Vesicular Stomatitis Virus–based Vaccines against Lassa and Ebola Viruses. Emerging Infectious Diseases, 2015, 21, 305-7.	2.0	72

#	Article	IF	CITATIONS
91	Complete Genome Sequences of Three Ebola Virus Isolates from the 2014 Outbreak in West Africa. Genome Announcements, 2014, 2, .	0.8	28
92	Ebola virus vaccines: an overview of current approaches. Expert Review of Vaccines, 2014, 13, 521-531.	2.0	122
93	Single-dose live-attenuated Nipah virus vaccines confer complete protection by eliciting antibodies directed against surface glycoproteins. Vaccine, 2014, 32, 2637-2644.	1.7	73
94	Novel neutralizing monoclonal antibodies protect rodents against lethal filovirus challenges. Trials in Vaccinology, 2014, 3, 89-94.	1.2	7
95	Ebola Virus Does Not Block Apoptotic Signaling Pathways. Journal of Virology, 2013, 87, 5384-5396.	1.5	25
96	Mapping of conserved and species-specific antibody epitopes on the Ebola virus nucleoprotein. Virus Research, 2013, 176, 83-90.	1.1	34
97	Novel mutations in Marburg virus glycoprotein associated with viral evasion from antibody mediated immune pressure. Journal of General Virology, 2013, 94, 876-883.	1.3	16
98	Vesicular Stomatitis Virus-Based Vaccines Protect Nonhuman Primates against Bundibugyo ebolavirus. PLoS Neglected Tropical Diseases, 2013, 7, e2600.	1.3	83
99	Antibody Quality and Protection from Lethal Ebola Virus Challenge in Nonhuman Primates Immunized with Rabies Virus Based Bivalent Vaccine. PLoS Pathogens, 2013, 9, e1003389.	2.1	106
100	Antibodies are necessary for rVSV/ZEBOV-GP–mediated protection against lethal Ebola virus challenge in nonhuman primates. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1893-1898.	3.3	236
101	Cathepsin B & L Are Not Required for Ebola Virus Replication. PLoS Neglected Tropical Diseases, 2012, 6, e1923.	1.3	60
102	The Ebola Virus Glycoprotein Contributes to but Is Not Sufficient for Virulence In Vivo. PLoS Pathogens, 2012, 8, e1002847.	2.1	88
103	Protective Efficacy of Neutralizing Monoclonal Antibodies in a Nonhuman Primate Model of Ebola Hemorrhagic Fever. PLoS ONE, 2012, 7, e36192.	1.1	121
104	The role of the alternative coreceptor GPR15 in SIV tropism for human cells. Virology, 2012, 433, 73-84.	1.1	21
105	Inhibition of Marburg Virus Budding by Nonneutralizing Antibodies to the Envelope Glycoprotein. Journal of Virology, 2012, 86, 13467-13474.	1.5	53
106	Recently Emerged Swine Influenza A Virus (H2N3) Causes Severe Pneumonia in Cynomolgus Macaques. PLoS ONE, 2012, 7, e39990.	1.1	15
107	Vesicular Stomatitis Virus–Based Ebola Vaccines With Improved Cross-Protective Efficacy. Journal of Infectious Diseases, 2011, 204, S1066-S1074.	1.9	102
108	Vesicular Stomatitis Virus-Based Vaccine Protects Hamsters against Lethal Challenge with Andes Virus. Journal of Virology, 2011, 85, 12781-12791.	1.5	68

#	Article	IF	CITATIONS
109	The Ebola Virus Glycoprotein and HIV-1 Vpu Employ Different Strategies to Counteract the Antiviral Factor Tetherin. Journal of Infectious Diseases, 2011, 204, S850-S860.	1.9	64
110	Pandemic Swine-Origin H1N1 Influenza A Virus Isolates Show Heterogeneous Virulence in Macaques. Journal of Virology, 2011, 85, 1214-1223.	1.5	84
111	Single Immunization With a Monovalent Vesicular Stomatitis Virus–Based Vaccine Protects Nonhuman Primates Against Heterologous Challenge With Bundibugyo ebolavirus. Journal of Infectious Diseases, 2011, 204, S1082-S1089.	1.9	52
112	Host Response Dynamics Following Lethal Infection of Rhesus Macaques With Zaire ebolavirus. Journal of Infectious Diseases, 2011, 204, S991-S999.	1.9	95
113	Protective Efficacy of a Bivalent Recombinant Vesicular Stomatitis Virus Vaccine in the Syrian Hamster Model of Lethal Ebola Virus Infection. Journal of Infectious Diseases, 2011, 204, S1090-S1097.	1.9	53
114	Ebola Virus Enters Host Cells by Macropinocytosis and Clathrin-Mediated Endocytosis. Journal of Infectious Diseases, 2011, 204, S957-S967.	1.9	219
115	Vesicular Stomatitis Virus-Based Vaccines for Prophylaxis and Treatment of Filovirus Infections. Journal of Bioterrorism & Biodefense, 2011, 01, .	0.1	47
116	A Novel Model of Lethal Hendra Virus Infection in African Green Monkeys and the Effectiveness of Ribavirin Treatment. Journal of Virology, 2010, 84, 9831-9839.	1.5	103
117	Enzyme-Linked Immunosorbent Assay for Detection of Filovirus Species-Specific Antibodies. Vaccine Journal, 2010, 17, 1723-1728.	3.2	97
118	C-type lectins do not act as functional receptors for filovirus entry into cells. Biochemical and Biophysical Research Communications, 2010, 403, 144-148.	1.0	25
119	Replication-Deficient Ebolavirus as a Vaccine Candidate. Journal of Virology, 2009, 83, 3810-3815.	1.5	73
120	Chimeric human parainfluenza virus bearing the Ebola virus glycoprotein as the sole surface protein is immunogenic and highly protective against Ebola virus challenge. Virology, 2009, 383, 348-361.	1.1	59
121	Proteolytic Activation of the 1918 Influenza Virus Hemagglutinin. Journal of Virology, 2009, 83, 3200-3211.	1.5	194
122	Analysis of the Interaction of Ebola Virus Glycoprotein with DCâ€SIGN (Dendritic Cell–Specific) Tj ETQq0 0 0 r Infectious Diseases, 2007, 196, S237-S246.	gBT /Over 1.9	lock 10 Tf 50 78
123	A simian immunodeficiency virus V3 loop mutant that does not efficiently use CCR5 or common alternative coreceptors is moderately attenuated in vivo. Virology, 2007, 360, 275-285.	1.1	3
124	Modulation of HIV and SIV neutralization sensitivity by DC-SIGN and mannose-binding lectin. Virology, 2007, 368, 322-330.	1.1	21
125	Analysis of the Structureâ^'Activity Relationship of Four Herpesviral UL97 Subfamily Protein Kinases Reveals Partial but not Full Functional Conservationâ€. Journal of Medicinal Chemistry, 2006, 49, 7044-7053.	2.9	55
126	Impact of polymorphisms in the DC-SIGNR neck domain on the interaction with pathogens. Virology, 2006, 347, 354-363.	1.1	28

ANDREA MARZI

#	Article	IF	CITATIONS
127	Modulation of virion incorporation of Ebolavirus glycoprotein: Effects on attachment, cellular entry and neutralization. Virology, 2006, 352, 345-356.	1.1	21
128	Highly Conserved Regions within the Spike Proteins of Human Coronaviruses 229E and NL63 Determine Recognition of Their Respective Cellular Receptors. Journal of Virology, 2006, 80, 8639-8652.	1.5	101
129	The Signal Peptide of the Ebolavirus Glycoprotein Influences Interaction with the Cellular Lectins DC-SIGN and DC-SIGNR. Journal of Virology, 2006, 80, 6305-6317.	1.5	51
130	DC-SIGN and CLEC-2 Mediate Human Immunodeficiency Virus Type 1 Capture by Platelets. Journal of Virology, 2006, 80, 8951-8960.	1.5	234
131	Attachment Factor and Receptor Engagement of Sars Coronavirus and Human Coronavirus NL63. Advances in Experimental Medicine and Biology, 2006, 581, 219-227.	0.8	8
132	LSECtin interacts with filovirus glycoproteins and the spike protein of SARS coronavirus. Virology, 2005, 340, 224-236.	1.1	192
133	Cellular p32 Recruits Cytomegalovirus Kinase pUL97 to Redistribute the Nuclear Lamina. Journal of Biological Chemistry, 2005, 280, 33357-33367.	1.6	158
134	Amino Acid 324 in the Simian Immunodeficiency Virus SIVmac V3 Loop Can Confer CD4 Independence and Modulate the Interaction with CCR5 and Alternative Coreceptors. Journal of Virology, 2004, 78, 3223-3232.	1.5	30
135	S Protein of Severe Acute Respiratory Syndrome-Associated Coronavirus Mediates Entry into Hepatoma Cell Lines and Is Targeted by Neutralizing Antibodies in Infected Patients. Journal of Virology, 2004, 78, 6134-6142.	1.5	172
136	DC-SIGN and DC-SIGNR Interact with the Glycoprotein of Marburg Virus and the S Protein of Severe Acute Respiratory Syndrome Coronavirus. Journal of Virology, 2004, 78, 12090-12095.	1.5	357
137	Susceptibility to SARS coronavirus S protein-driven infection correlates with expression of angiotensin converting enzyme 2 and infection can be blocked by soluble receptor. Biochemical and Biophysical Research Communications, 2004, 319, 1216-1221	1.0	246