Gerhard Schembecker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7270101/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Developing the biofacility of the future based on continuous processing and single-use technology. Journal of Biotechnology, 2015, 213, 120-130.	3.8	146
2	Experimental study of the effect of bubbles on nucleation during batch cooling crystallization. Chemical Engineering Science, 2009, 64, 4155-4163.	3.8	101
3	Cost evaluation of antibody production processes in different operation modes. Chemical Engineering Science, 2016, 141, 63-74.	3.8	94
4	Small scale, modular and continuous: A new approach in plant design. Chemical Engineering and Processing: Process Intensification, 2012, 52, 140-150.	3.6	92
5	Process synthesis for reactive separations. Chemical Engineering and Processing: Process Intensification, 2003, 42, 179-189.	3.6	83
6	Investigations on the Synthesis of Methyl Acetate in a Heterogeneous Reactive Distillation Process. Chemical Engineering and Technology, 1998, 21, 393.	1.5	82
7	Sonocrystallization and crystallization with gassing of adipic acid. Chemical Engineering Science, 2010, 65, 1016-1027.	3.8	78
8	Low-cost small scale processing technologies for production applications in various environments—Mass produced factories. Chemical Engineering and Processing: Process Intensification, 2012, 51, 32-52.	3.6	76
9	Measurement and Modeling Solubility of Aqueous Multisolute Amino-Acid Solutions. Industrial & Engineering Chemistry Research, 2010, 49, 1395-1401.	3.7	69
10	Towards an optimized crystallization with ultrasound: Effect of solvent properties and ultrasonic process parameters. Journal of Crystal Growth, 2008, 310, 4177-4184.	1.5	68
11	Modeling ultrasound-induced nucleation during cooling crystallization. Chemical Engineering Science, 2009, 64, 1635-1642.	3.8	65
12	Continuous viral inactivation at low pH value in antibody manufacturing. Chemical Engineering and Processing: Process Intensification, 2016, 102, 88-101.	3.6	58
13	Modeling induced nucleation processes during batch cooling crystallization: A sequential parameter determination procedure. Computers and Chemical Engineering, 2013, 52, 216-229.	3.8	54
14	Fast and isocratic HPLC-method for steviol glycosides analysis from Stevia rebaudiana leaves. Journal Fur Verbraucherschutz Und Lebensmittelsicherheit, 2012, 7, 147-154.	1.4	51
15	Analysis of Crystal Size Dispersion Effects in a Continuous Coiled Tubular Crystallizer: Experiments and Modeling. Crystal Growth and Design, 2018, 18, 1459-1473.	3.0	49
16	Establishment of a yeast-based VLP platform for antigen presentation. Microbial Cell Factories, 2018, 17, 17.	4.0	49
17	Modeling pH and Solubilities in Aqueous Multisolute Amino Acid Solutions. Industrial & Engineering Chemistry Research, 2011, 50, 3503-3509.	3.7	45
18	Influence of physical properties and operating parameters on hydrodynamics in Centrifugal Partition Chromatography A, 2011, 1218, 5401-5413.	3.7	39

#	Article	IF	CITATIONS
19	Information Technologies for Innovative Process and Plant Design. Chemie-Ingenieur-Technik, 2014, 86, 966-981.	0.8	39
20	Modules in process industry â^' A life cycle definition. Chemical Engineering and Processing: Process Intensification, 2017, 111, 115-126.	3.6	37
21	Role of bubble size for the performance of continuous foam fractionation in stripping mode. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 473, 85-94.	4.7	34
22	Selection of operating parameters on the basis of hydrodynamics in centrifugal partition chromatography for the purification of nybomycin derivatives. Journal of Chromatography A, 2013, 1274, 54-64.	3.7	32
23	Agglomeration degree distribution as quality criterion to evaluate crystalline products. Chemical Engineering Science, 2015, 133, 157-169.	3.8	31
24	Shape-independent particle classification for discrimination of single crystals and agglomerates. Powder Technology, 2019, 345, 425-437.	4.2	31
25	A general approach to module-based plant design. Chemical Engineering Research and Design, 2018, 137, 125-140.	5.6	30
26	Virus study for continuous low pH viral inactivation inside a coiled flow inverter. Biotechnology and Bioengineering, 2019, 116, 857-869.	3.3	28
27	Investigation of structural changes of β-casein and lysozyme at the gas–liquid interface during foam fractionation. Journal of Biotechnology, 2012, 161, 138-146.	3.8	27
28	Investigation, comparison and design of chambers used in centrifugal partition chromatography on the basis of flow pattern and separation experiments. Journal of Chromatography A, 2015, 1390, 39-49.	3.7	26
29	Variable selection and training set design for particle classification using a linear and a non-linear classifier. Chemical Engineering Science, 2017, 173, 131-144.	3.8	26
30	Influence of Gassing Crystallization Parameters on Induction Time and Crystal Size Distribution. Crystal Growth and Design, 2016, 16, 6797-6803.	3.0	25
31	Design of Median Crystal Diameter Using Gassing Crystallization and Different Process Concepts. Crystal Growth and Design, 2016, 16, 1320-1328.	3.0	25
32	Potential of gassing crystallization to control the agglomeration degree of crystalline products. Powder Technology, 2017, 320, 386-396.	4.2	25
33	Die 50 %-Idee: Modularisierung im Planungsprozess. Chemie-Ingenieur-Technik, 2012, 84, 581-587.	0.8	24
34	A framework for the modeling and optimization of process superstructures under uncertainty. Chemical Engineering Science, 2014, 115, 225-237.	3.8	24
35	Model-based conceptual design and optimization tool support for the early stage development of chemical processes under uncertainty. Computers and Chemical Engineering, 2013, 59, 63-73.	3.8	23
36	Capacity Flexibility of Chemical Plants. Chemical Engineering and Technology, 2014, 37, 332-342.	1.5	23

#	Article	IF	CITATIONS
37	Techniques for the recovery of volatile aroma compounds from biochemical broth: A review. Flavour and Fragrance Journal, 2018, 33, 203-216.	2.6	23
38	Induced nucleation by gassing and its monitoring for the design and operation of an MSMPR cascade. Chemical Engineering Science, 2018, 192, 840-849.	3.8	23
39	Sideâ€byâ€side comparability of batch and continuous downstream for the production of monoclonal antibodies. Biotechnology and Bioengineering, 2020, 117, 1024-1036.	3.3	23
40	READPERT — development, selection and design of chemical reactors. Chemical Engineering and Processing: Process Intensification, 1995, 34, 317-322.	3.6	22
41	Design of equipment modules for flexibility. Chemical Engineering Science, 2017, 168, 271-288.	3.8	22
42	Selection of equipment modules for a flexible modular production plant by a multi-objective evolutionary algorithm. Computers and Chemical Engineering, 2019, 123, 196-221.	3.8	22
43	Continuous slug flow crystallization: Impact of design and operating parameters on product quality. Chemical Engineering Research and Design, 2021, 170, 290-303.	5.6	22
44	Multiphase flow modeling in centrifugal partition chromatography. Journal of Chromatography A, 2011, 1218, 6092-6101.	3.7	21
45	Real option framework for equipment wise expansion of modular plants applied to the design of a continuous multiproduct plant. Chemical Engineering Research and Design, 2015, 93, 511-521.	5.6	21
46	Fixed capital investment estimation for modular production plants. Chemical Engineering Science, 2017, 158, 395-410.	3.8	21
47	Characterization of slug formation towards the performance of air-liquid segmented flow. Chemical Engineering Science, 2019, 207, 1288-1298.	3.8	21
48	Comparison of process concepts for preparative chromatography. Chemical Engineering Science, 2010, 65, 5373-5381.	3.8	20
49	Enhanced Product Quality Control through Separation of Crystallization Phenomena in a Four-Stage MSMPR Cascade. Crystal Growth and Design, 2018, 18, 7323-7334.	3.0	20
50	Efficient conversion of pretreated brewer's spent grain and wheat bran by submerged cultivation of Hericium erinaceus. Bioresource Technology, 2016, 222, 123-129.	9.6	19
51	Amino-Acid Adsorption in MFI-Type Zeolites Enabled by the pH-Dependent Ability to Displace Water. Journal of Physical Chemistry C, 2013, 117, 18927-18935.	3.1	18
52	Continuous viral filtration for the production of monoclonal antibodies. Chemical Engineering Research and Design, 2019, 152, 336-347.	5.6	17
53	Scaling-up recycling chromatography. Chemical Engineering Science, 2009, 64, 4068-4080.	3.8	16
54	Generation of an equipment module database for heat exchangers by cluster analysis of industrial applications. Chemical Engineering Science, 2017, 167, 278-287.	3.8	16

#	Article	IF	CITATIONS
55	Tunable aqueous polymer-phase impregnated resins-technology—A novel approach to aqueous two-phase extraction. Journal of Chromatography A, 2014, 1329, 38-44.	3.7	15
56	Enzymatic hydrolysis in an aqueous organic two-phase system using centrifugal partition chromatography. Journal of Chromatography A, 2015, 1391, 72-79.	3.7	15
57	Mass Transfer of Proteins in Aqueous Two-Phase Systems. Scientific Reports, 2019, 9, 3692.	3.3	15
58	Knowledge Based Design of Piping and Instrumentation Diagrams. Chemie-Ingenieur-Technik, 2012, 84, 747-761.	0.8	14
59	Display of malaria transmission-blocking antigens on chimeric duck hepatitis B virus-derived virus-like particles produced in Hansenula polymorpha. PLoS ONE, 2019, 14, e0221394.	2.5	14
60	Molecular Interaction of Amino Acids with Acidic Zeolite BEA: The Effect of Water. Journal of Physical Chemistry C, 2014, 118, 5810-5819.	3.1	13
61	Preparative purification of rebaudioside A from aqueous extracts using chromatography: a process idea. Journal Fur Verbraucherschutz Und Lebensmittelsicherheit, 2012, 7, 295-303.	1.4	12
62	Intensified hydroformylation as an example for flexible intermediates production. Chemical Engineering and Processing: Process Intensification, 2014, 85, 1-9.	3.6	12
63	Growth Rate Measurements of Organic Crystals in a Coneâ€Shaped Fluidizedâ€Bed Cell. Chemical Engineering and Technology, 2018, 41, 1165-1172.	1.5	12
64	Cooling Crystallization: Does Gassing Compete with Seeding?. Crystal Growth and Design, 2018, 18, 4906-4910.	3.0	12
65	Recovery of Natural α-Ionone from Fermentation Broth. Journal of Agricultural and Food Chemistry, 2019, 67, 13412-13419.	5.2	12
66	Characterization of a Modular Continuous Vacuum Screw Filter for Small-Scale Solid–Liquid Separation of Suspensions. Organic Process Research and Development, 2021, 25, 926-940.	2.7	12
67	Heat integration in batch processes including heat streams with time dependent temperature progression. Applied Thermal Engineering, 2014, 70, 321-327.	6.0	11
68	Production Rateâ€Dependent Key Performance Indicators for a Systematic Design of Biochemical Downstream Processes. Chemical Engineering and Technology, 2016, 39, 354-364.	1.5	11
69	Methodology for evaluating modular production concepts. Chemical Engineering Science, 2016, 155, 153-166.	3.8	11
70	Gassing Crystallization at Different Scales: Potential to Control Nucleation and Product Properties. Crystal Growth and Design, 2017, 17, 1028-1035.	3.0	11
71	Bioprocess optimization for purification of chimeric VLP displaying BVDV E2 antigens produced in yeast Hansenula polymorpha. Journal of Biotechnology, 2019, 306, 203-212.	3.8	11
72	Selection and Use of Poly Ethylene Glycol and Phosphate Based Aqueous Two-Phase Systems for the Separation of Proteins by Centrifugal Partition Chromatography. Journal of Liquid Chromatography and Related Technologies, 2015, 38, 929-941.	1.0	10

GERHARD SCHEMBECKER

#	Article	IF	CITATIONS
73	Evaluating the potential for optimization of axial back-mixing in continuous pharmaceutical manufacturing. Computers and Chemical Engineering, 2021, 147, 107251.	3.8	10
74	Quantification and evaluation of operating parameters' effect on suspension behavior for slug flow crystallization. Chemical Engineering Science, 2021, 243, 116771.	3.8	10
75	Selection of reference components in reaction invariants. Chemical Engineering Science, 2005, 60, 7168-7171.	3.8	9
76	Erinacine C: A novel approach to produce the secondary metabolite by submerged cultivation of Hericium erinaceus. Fungal Biology, 2015, 119, 1334-1344.	2.5	9
77	A model to predict fugitive VOC emissions from liquid charged flange joints with graphite gaskets. Chemical Engineering Journal, 2010, 159, 11-16.	12.7	8
78	A Fully Automated Ad―and Desorption Method for Resin and Solvent Screening. Chemical Engineering and Technology, 2013, 36, 1157-1164.	1.5	8
79	Lead time estimation for modular production plants. Chemical Engineering Research and Design, 2017, 128, 96-106.	5.6	8
80	Aroma absorption in a rotating packed bed with a tailor-made archimedean spiral packing. Chemical Engineering Science, 2021, 231, 116334.	3.8	8
81	Challenges in tracing material flow passing a loss-in-weight feeder in continuous manufacturing processes. International Journal of Pharmaceutics, 2022, 612, 121304.	5.2	8
82	Die 50 %-Idee: Vom Produkt zur Produktionsanlage in der halben Zeit. Chemie-Ingenieur-Technik, 2010, 82, 2031-2031.	0.8	7
83	Heterologous fermentation of a diterpene from <i>Alternaria brassisicola</i> . Mycology, 2014, 5, 207-219.	4.4	7
84	Determining the solute–solid interactions in phytoextraction. Chemical Engineering Science, 2015, 134, 287-296.	3.8	7
85	Heuristic-numeric design of separation processes for azeotropic mixtures. Computers and Chemical Engineering, 1997, 21, S231-S236.	3.8	6
86	Molecular interactions of alcohols with zeolite BEA and MOR frameworks. Journal of Molecular Modeling, 2013, 19, 5611-5624.	1.8	6
87	Identification of parameter interactions influencing the precipitation of a monoclonal antibody with anionic polyelectrolytes. Separation and Purification Technology, 2014, 127, 165-173.	7.9	6
88	Multivariate risk analysis of an intensified modular hydroformylation process. Chemical Engineering and Processing: Process Intensification, 2015, 95, 124-134.	3.6	6
89	The influence of impurity proteins on the precipitation of a monoclonal antibody with an anionic polyelectrolyte. Separation and Purification Technology, 2015, 146, 252-260.	7.9	6
90	Automation of Solubility Measurements on a Robotic Platform. Chemical Engineering and Technology, 2016, 39, 1049-1057.	1.5	6

#	Article	IF	CITATIONS
91	Framework to decide for a volume flexible chemical plant during early phases of plant design. Chemical Engineering Research and Design, 2017, 128, 85-95.	5.6	6
92	Simulation of continuous low pH viral inactivation inside a coiled flow inverter. Biotechnology and Bioengineering, 2020, 117, 1048-1062.	3.3	6
93	AZEOPERT - A heuristic-numeric system for the prediction of azeotrope formation. Computers and Chemical Engineering, 1995, 19, 253-258.	3.8	5
94	Structuring of reactive distillation columns for non-ideal mixtures using MINLP-techniques. Computer Aided Chemical Engineering, 2004, 18, 493-498.	0.5	5
95	Die 50 %-Idee: vom Produkt zur Produktionsanlage in der halben Zeit. Chemie-Ingenieur-Technik, 2012, 84, 563-563.	0.8	5
96	Simultaneous optimization of scheduling, equipment dimensions and operating conditions of sequential multi-purpose batch plants. Computers and Chemical Engineering, 2016, 94, 157-179.	3.8	5
97	Generation of an equipment module database — A maximum coverage problem. Chemical Engineering Research and Design, 2019, 148, 164-168.	5.6	5
98	Knowledgeâ€Based Conceptual Synthesis of Industrialâ€Scale Downstream Processes for Biochemical Products. Chemical Engineering and Technology, 2015, 38, 537-546.	1.5	4
99	Framework to decide for an expansion strategy of a small scale continuously operated modular multi-product plant. Chemical Engineering and Processing: Process Intensification, 2017, 113, 74-85.	3.6	4
100	Approach for the characterization of industrial process tasks as basis for the generation and application of an equipment module database. Chemical Engineering Science, 2018, 191, 42-55.	3.8	4
101	Comparison of capacity expansion strategies for chemical production plants. Chemical Engineering Research and Design, 2019, 143, 56-78.	5.6	4
102	Simulation of pH level distribution inside a coiled flow inverter for continuous low pH viral inactivation. Biotechnology and Bioengineering, 2020, 117, 429-437.	3.3	4
103	Tracking raw material flow through a continuous direct compression line Part I of II: Residence time distribution modeling and sensitivity analysis enabling increased process yield. International Journal of Pharmaceutics, 2022, 614, 121467.	5.2	4
104	Auswahl von Daten und Berechnungsmethoden für Reinstoffe und Gemische mit Hilfe eines heuristischnumerischen Beratungssystems. Chemie-Ingenieur-Technik, 1996, 68, 1307-1311.	0.8	3
105	Synthesis of reactive separation processes. , 2006, , 7-94.		3
106	Fugitive Emissions from Liquid-Charged Flange Joints: A Comparison of Laboratory and Field Data. Environmental Science & Technology, 2009, 43, 4498-4502.	10.0	3
107	A Model to Characterize and Predict Fugitive Emissions from Flange Joints. Chemical Engineering and Technology, 2014, 37, 1205-1210.	1.5	3
108	Synthesis of batch heat exchanger networks utilizing a match ranking matrix. Applied Thermal Engineering, 2016, 100, 78-83.	6.0	3

GERHARD SCHEMBECKER

#	Article	IF	CITATIONS
109	Clarification of a monoclonal antibody with cationic polyelectrolytes: Analysis of influencing parameters. Biochemical Engineering Journal, 2017, 122, 60-70.	3.6	3
110	Application of rotating packed bed for inâ€line aroma stripping from cell slurry. Journal of Chemical Technology and Biotechnology, 2020, 95, 2834-2841.	3.2	3
111	Economic evaluation of rotating packed bed use for aroma absorption from bioreactor off-gas. Chemical Engineering and Processing: Process Intensification, 2020, 154, 108011.	3.6	3
112	Extraction on a Robotic Platform – Autonomous Solvent Selection under Economic Evaluation Criteria. Chemical Engineering and Technology, 2021, 44, 1578-1584.	1.5	3
113	Multistage Processing of Tunable Aqueous Polymer Phase Impregnated Resins (TAPPIR®). Chemical Engineering and Technology, 2018, 41, 1324-1330.	1.5	2
114	Using design spaces for more accurate cost estimation during early engineering phases. Chemical Engineering Research and Design, 2020, 153, 592-602.	5.6	2
115	Aroma absorption in rapeseed oil using rotating packed bed. Flavour and Fragrance Journal, 2021, 36, 137-147.	2.6	2
116	Application and evaluation of preselection approaches to decide on the use of equipment modules. Chemical Engineering Research and Design, 2021, 173, 89-107.	5.6	2
117	Generic model framework for the synthesis of structured reactive separation processes. Computer Aided Chemical Engineering, 2006, , 1075-1081.	0.5	1
118	Modeling the Quasi-Equilibrium of Multistage Phytoextractions. Industrial & Engineering Chemistry Research, 2016, 55, 1808-1812.	3.7	1
119	Tracking raw material flow through a continuous direct compression line. Part II of II: Predicting dynamic changes in quality attributes of tablets due to disturbances in raw material properties using an independent residence time distribution model. International Journal of Pharmaceutics, 2022, 615, 121528.	5.2	1
120	Reactor selection and design for heterogeneous reaction systems. Computer Aided Chemical Engineering, 2001, 9, 357-362.	0.5	0
121	INOSIM Bio - new approaches for bioprocess simulation and optimization. Computer Aided Chemical Engineering, 2013, 32, 865-870.	0.5	0
122	Research on industrial biotechnology within the CLIB-Graduate Cluster—Part III. Journal of Biotechnology, 2013, 167, 73-74.	3.8	0
123	Development of an Automated Adsorbent Selection Strategy for Liquidâ€Phase Adsorption. Chemical Engineering and Technology, 0, , .	1.5	0