Szun S Tay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7270036/publications.pdf

Version: 2024-02-01

304743 345221 2,506 40 22 36 citations h-index g-index papers 41 41 41 4904 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Optimizing the Polymer Cloak for Upconverting Nanoparticles: An Evaluation of Bioactivity and Optical Performance. ACS Applied Materials & Samp; Interfaces, 2021, 13, 16142-16154.	8.0	15
2	The Lifeact-EGFP mouse is a translationally controlled fluorescent reporter of T cell activation. Journal of Cell Science, 2020, 133 , .	2.0	9
3	Efficient inÂvivo editing of OTC-deficient patient-derived primary human hepatocytes. JHEP Reports, 2020, 2, 100065.	4.9	18
4	Cytotoxic T cells swarm by homotypic chemokine signalling. ELife, 2020, 9, .	6.0	46
5	Tropomyosin concentration but not formin nucleators mDia1 and mDia3 determines the level of tropomyosin incorporation into actin filaments. Scientific Reports, 2019, 9, 6504.	3.3	11
6	Prevention of Cholestatic Liver Disease and Reduced Tumorigenicity in a Murine Model of PFIC Type 3 Using Hybrid AAVâ€piggyBac Gene Therapy. Hepatology, 2019, 70, 2047-2061.	7. 3	25
7	An Atypical Parvovirus Drives Chronic Tubulointerstitial Nephropathy and Kidney Fibrosis. Cell, 2018, 175, 530-543.e24.	28.9	89
8	Direct recognition of hepatocyte-expressed MHC class I alloantigens is required for tolerance induction. JCI Insight, 2018, 3, .	5.0	11
9	Limiting Thymic Precursor Supply Increases the Risk of Lymphoid Malignancy in Murine X-Linked Severe Combined Immunodeficiency. Molecular Therapy - Nucleic Acids, 2017, 6, 1-14.	5.1	20
10	A Liver Capsular Network of Monocyte-Derived Macrophages Restricts Hepatic Dissemination of Intraperitoneal Bacteria by Neutrophil Recruitment. Immunity, 2017, 47, 374-388.e6.	14.3	171
11	Gamma-Delta T Cells in the Skin. , 2017, , 51-66.		1
12	Innate Lymphoid Cells in the Skin. , 2017, , 35-50.		0
13	Liver-Resident Memory CD8 + T Cells Form a Front-Line Defense against Malaria Liver-Stage Infection. Immunity, 2016, 45, 889-902.	14.3	341
14	TriKEs and BiKEs join CARs on the cancer immunotherapy highway. Human Vaccines and Immunotherapeutics, 2016, 12, 2790-2796.	3.3	47
15	Neutrophils. , 2016, , 147-167.		2
16	IL-2 is a critical regulator of group 2 innate lymphoid cell function during pulmonary inflammation. Journal of Allergy and Clinical Immunology, 2015, 136, 1653-1663.e7.	2.9	123
17	The Influence of Macronutrients on Splanchnic and Hepatic Lymphocytes in Aging Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2015, 70, 1499-1507.	3.6	30
18	miRâ€181a mediates <scp>TGF</scp> â€Î²â€induced hepatocyte <scp>EMT</scp> and is dysregulated in cirrhosis and hepatocellular cancer. Liver International, 2015, 35, 240-253.	3.9	71

#	Article	IF	CITATIONS
19	Immune outcomes in the liver: Is CD8 T cell fate determined by the environment?. Journal of Hepatology, 2015, 63, 1005-1014.	3.7	45
20	Adeno-associated virus serotypes for gene therapeutics. Current Opinion in Pharmacology, 2015, 24, 59-67.	3.5	113
21	The Skin Immune Atlas: Three-Dimensional Analysis of Cutaneous Leukocyte Subsets by Multiphoton Microscopy. Journal of Investigative Dermatology, 2015, 135, 84-93.	0.7	96
22	Antigen expression level threshold tunes the fate of CD8 T cells during primary hepatic immune responses. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2540-9.	7.1	81
23	The Skin-Resident Immune Network. Current Dermatology Reports, 2014, 3, 13-22.	2.1	101
24	Intrahepatic Activation of Naive CD4+ T Cells by Liver-Resident Phagocytic Cells. Journal of Immunology, 2014, 193, 2087-2095.	0.8	28
25	Differential migration of passenger leukocytes and rapid deletion of naive alloreactive CD8 T cells after mouse liver transplantation. Liver Transplantation, 2013, 19, 1224-1235.	2.4	25
26	Cutaneous immunosurveillance and regulation of inflammation by group 2 innate lymphoid cells. Nature Immunology, 2013, 14, 564-573.	14.5	410
27	Gene Therapy for Tolerance. Transplantation, 2013, 95, 70-77.	1.0	19
28	Two lymph nodes draining the mouse liver are the preferential site of DC migration and T cell activation. Journal of Hepatology, 2012, 57, 352-358.	3.7	46
29	Expression of common gamma chain signalling cytokines and their receptors distinguishes rejection from tolerance in a rat organ transplant model. Transplant Immunology, 2012, 27, 89-94.	1.2	7
30	No evidence for involvement of donor NK cells in liver transplant tolerance. Transplant Immunology, 2011, 24, 138-139.	1.2	7
31	Role of the Hepatic Parenchyma in Liver Transplant Tolerance: A Paradigm Revisited. Digestive Diseases, 2011, 29, 391-401.	1.9	9
32	Hepatocyte entry leads to degradation of autoreactive CD8 T cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16735-16740.	7.1	137
33	Donor IL-4-treatment induces alternatively activated liver macrophages and IDO-expressing NK cells and promotes rat liver allograft acceptance. Transplant Immunology, 2010, 22, 172-178.	1.2	24
34	From research tool to routine test: CD38 monitoring in HIV patients. Cytometry Part B - Clinical Cytometry, 2009, 76B, 375-384.	1.5	22
35	Overexpression of indoleamine dioxygenase in rat liver allografts using a high-efficiency adeno-associated virus vector does not prevent acute rejection. Liver Transplantation, 2009, 15, 233-241.	2.4	19
36	Role of IL-4 and Th2 responses in allograft rejection and tolerance. Current Opinion in Organ Transplantation, 2009, 14, 16-22.	1.6	57

#	Article	IF	CITATIONS
37	Human Mesenchymal Stem Cells Induce T Cell Anergy and Downregulate T Cell Allo-Responses via the TH2 Pathway: Relevance to Tissue Engineering Human Heart Valves. Tissue Engineering, 2006, 12, 2263-2273.	4.6	201
38	Human Mesenchymal Stem Cells Induce T Cell Anergy and Downregulate T Cell Allo-Responses via the TH2 Pathway: Relevance to Tissue Engineering Human Heart Valves. Tissue Engineering, 2006, .	4.6	0
39	Effect of Cognate Human CD4+ T Cell and Endothelial Cell Interactions Upon Chemokine Production. Transplantation, 2004, 78, 987-994.	1.0	11
40	IFN-Î ³ Reverses the Stop Signal Allowing Migration of Antigen-Specific T Cells into Inflammatory Sites. Journal of Immunology, 2003, 170, 3315-3322.	0.8	18