MichaÅ, BartmaÅ,,ski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7269498/publications.pdf

Version: 2024-02-01

623188 752256 14 35 505 20 citations g-index h-index papers 37 37 37 436 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Electrophoretic deposition (EPD) of nanohydroxyapatite - nanosilver coatings on Ti13Zr13Nb alloy. Ceramics International, 2017, 43, 11820-11829.	2.3	42
2	Properties of Nanohydroxyapatite Coatings Doped with Nanocopper, Obtained by Electrophoretic Deposition on Ti13Zr13Nb Alloy. Materials, 2019, 12, 3741.	1.3	28
3	Effects of solution composition and electrophoretic deposition voltage on various properties of nanohydroxyapatite coatings on the Ti13Zr13Nb alloy. Ceramics International, 2018, 44, 19236-19246.	2.3	27
4	Comprehensive Evaluation of the Biological Properties of Surface-Modified Titanium Alloy Implants. Journal of Clinical Medicine, 2020, 9, 342.	1.0	27
5	Electrodeposited Biocoatings, Their Properties and Fabrication Technologies: A Review. Coatings, 2020, 10, 782.	1.2	26
6	Effects of electrophoretic deposition times and nanotubular oxide surfaces on properties of the nanohydroxyapatite/nanocopper coating on the Ti13Zr13Nb alloy. Ceramics International, 2019, 45, 20002-20010.	2.3	25
7	Laser-assisted modification of titanium dioxide nanotubes in a tilted mode as surface modification and patterning strategy. Applied Surface Science, 2020, 508, 145143.	3.1	24
8	The Morphology, Structure, Mechanical Properties and Biocompatibility of Nanotubular Titania Coatings before and after Autoclaving Process. Journal of Clinical Medicine, 2019, 8, 272.	1.0	21
9	Electrophoretic Deposition and Characterization of Chitosan/Eudragit E 100 Coatings on Titanium Substrate. Coatings, 2020, 10, 607.	1.2	21
10	Studies on Silver Ions Releasing Processes and Mechanical Properties of Surface-Modified Titanium Alloy Implants. International Journal of Molecular Sciences, 2018, 19, 3962.	1.8	20
11	Titania Nanotubes/Hydroxyapatite Nanocomposites Produced with the Use of the Atomic Layer Deposition Technique: Estimation of Bioactivity and Nanomechanical Properties. Nanomaterials, 2019, 9, 123.	1.9	20
12	Electrophoretic Deposition and Characteristics of Chitosan–Nanosilver Composite Coatings on a Nanotubular TiO2 Layer. Coatings, 2020, 10, 245.	1.2	20
13	The Effect of Surface Modification of Ti13Zr13Nb Alloy on Adhesion of Antibiotic and Nanosilver-Loaded Bone Cement Coatings Dedicated for Application as Spacers. Materials, 2019, 12, 2964.	1.3	17
14	Comparison of Properties of the Hybrid and Bilayer MWCNTs—Hydroxyapatite Coatings on Ti Alloy. Coatings, 2019, 9, 643.	1,2	16
15	Electrophoretically Deposited Chitosan/Eudragit E 100/AgNPs Composite Coatings on Titanium Substrate as a Silver Release System. Materials, 2021, 14, 4533.	1.3	15
16	In Vitro Studies on Nanoporous, Nanotubular and Nanosponge-Like Titania Coatings, with the Use of Adipose-Derived Stem Cells. Materials, 2020, 13, 1574.	1.3	14
17	Titania Nanofiber Scaffolds with Enhanced Biointegration Activityâ€"Preliminary In Vitro Studies. International Journal of Molecular Sciences, 2019, 20, 5642.	1.8	12
18	Locust bean gum as green and water-soluble binder for LiFePO4 and Li4Ti5O12 electrodes. Journal of Applied Electrochemistry, 2021, 51, 359-371.	1.5	12

#	Article	IF	Citations
19	Mechanical Behavior of Bi-Layer and Dispersion Coatings Composed of Several Nanostructures on Ti13Nb13Zr Alloy. Materials, 2021, 14, 2905.	1.3	11
20	Mechanical and Corrosion Properties of Laser Surface-Treated Ti13Nb13Zr Alloy with MWCNTs Coatings. Materials, 2020, 13, 3991.	1.3	10
21	Chitosan/poly(4-vinylpyridine) coatings formed on AgNPs-decorated titanium. Materials Letters, 2022, 319, 132293.	1.3	10
22	The Chemical and Biological Properties of Nanohydroxyapatite Coatings with Antibacterial Nanometals, Obtained in the Electrophoretic Process on the Ti13Zr13Nb Alloy. International Journal of Molecular Sciences, 2021, 22, 3172.	1.8	9
23	Effects of Surface Pretreatment of Titanium Substrates on Properties of Electrophoretically Deposited Biopolymer Chitosan/Eudragit E 100 Coatings. Coatings, 2021, 11, 1120.	1.2	9
24	The Properties of Nanosilver – Doped Nanohydroxyapatite Coating On the Ti13zr13Nb Alloy. Advances in Materials Science, 2017, 17, 18-28.	0.4	9
25	The Determinants of Morphology and Properties of the Nanohydroxyapatite Coating Deposited on the Ti13Zr13Nb Alloy by Electrophoretic Technique. Advances in Materials Science, 2016, 16, 56-66.	0.4	7
26	The Influence of the Depth of Cut in Single-Pass Grinding on the Microstructure and Properties of the C45 Steel Surface Layer. Materials, 2020, 13, 1040.	1.3	7
27	Nanotubular Oxide Layer Formed on Helix Surfaces of Dental Screw Implants. Coatings, 2021, 11, 115.	1.2	7
28	The Influence of Nanometals, Dispersed in the Electrophoretic Nanohydroxyapatite Coatings on the Ti13Zr13Nb Alloy, on Their Morphology and Mechanical Properties. Materials, 2021, 14, 1638.	1.3	6
29	DC and AC Conductivity, Biosolubility and Thermal Properties of Mg-Doped Na2O–CaO–P2O5 Glasses. Materials, 2021, 14, 2626.	1.3	6
30	Properties of Barium Cerate Thin Films Formed Using E-Beam Deposition. Crystals, 2020, 10, 1152.	1.0	5
31	Properties of chitosan/CuNPs coatings electrophoretically deposited on TiO2 nanotubular oxide layer of Ti13Zr13Nb alloy. Materials Letters, 2022, 308, 130982.	1.3	5
32	Hydrogen Embrittlement and Oxide Layer Effect in the Cathodically Charged Zircaloy-2. Materials, 2020, 13, 1913.	1.3	4
33	Investigations of Titanium Implants Covered with Hydroxyapatite Layer. Advances in Materials Science, 2016, 16, 78-86.	0.4	4
34	Project of Hip Joint Endoprosthesis for an Individual Patient with Materials Selection. Advances in Materials Science, 2015, 15, 30-36.	0.4	3
35	A Simple Replica Method as the Way to Obtain a Morphologically and Mechanically Bone-like Iron-Based Biodegradable Material. Materials, 2022, 15, 4552.	1.3	3