Peishen Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7269223/publications.pdf

Version: 2024-02-01

22 1,538 18
papers citations h-index

25 25 25 1828 all docs docs citations times ranked citing authors

22

g-index

#	Article	IF	CITATIONS
1	Phase-plate cryo-EM structure of a biased agonist-bound human GLP-1 receptor–Gs complex. Nature, 2018, 555, 121-125.	27.8	263
2	Cathepsin S Causes Inflammatory Pain via Biased Agonism of PAR2 and TRPV4. Journal of Biological Chemistry, 2014, 289, 27215-27234.	3.4	153
3	Neutrophil Elastase Activates Protease-activated Receptor-2 (PAR2) and Transient Receptor Potential Vanilloid 4 (TRPV4) to Cause Inflammation and Pain. Journal of Biological Chemistry, 2015, 290, 13875-13887.	3.4	134
4	Protease-activated receptor-2 in endosomes signals persistent pain of irritable bowel syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7438-E7447.	7.1	128
5	Activation of the GLP-1 receptor by a non-peptidic agonist. Nature, 2020, 577, 432-436.	27.8	119
6	Structural basis of G $<$ sub $>$ s $<$ /sub $>$ and G $<$ sub $>$ i $<$ /sub $>$ recognition by the human glucagon receptor. Science, 2020, 367, 1346-1352.	12.6	117
7	Differential GLP-1R Binding and Activation by Peptide and Non-peptide Agonists. Molecular Cell, 2020, 80, 485-500.e7.	9.7	111
8	Dominant Negative G Proteins Enhance Formation and Purification of Agonist-GPCR-G Protein Complexes for Structure Determination. ACS Pharmacology and Translational Science, 2018, 1, 12-20.	4.9	96
9	Toward a Structural Understanding of Class B GPCR Peptide Binding and Activation. Molecular Cell, 2020, 77, 656-668.e5.	9.7	92
10	Glucagon-like peptide-1 receptor internalisation controls spatiotemporal signalling mediated by biased agonists. Biochemical Pharmacology, 2018, 156, 406-419.	4.4	45
11	Two distinct domains of the glucagon-like peptide-1 receptor control peptide-mediated biased agonism. Journal of Biological Chemistry, 2018, 293, 9370-9387.	3.4	43
12	Pharmacological characterization of mono-, dual- and tri-peptidic agonists at GIP and GLP-1 receptors. Biochemical Pharmacology, 2020, 177, 114001.	4.4	37
13	Granzyme A in Chikungunya and Other Arboviral Infections. Frontiers in Immunology, 2019, 10, 3083.	4.8	30
14	Dynamics of GLP-1R peptide agonist engagement are correlated with kinetics of G protein activation. Nature Communications, 2022, 13, 92.	12.8	30
15	AM833 Is a Novel Agonist of Calcitonin Family G Protein–Coupled Receptors: Pharmacological Comparison with Six Selective and Nonselective Agonists. Journal of Pharmacology and Experimental Therapeutics, 2021, 377, 417-440.	2.5	27
16	Structural and functional diversity among agonist-bound states of the GLP-1 receptor. Nature Chemical Biology, 2022, 18, 256-263.	8.0	24
17	The nature of efficacy at G protein-coupled receptors. Biochemical Pharmacology, 2019, 170, 113647.	4.4	23
18	Evaluation of biased agonism mediated by dual agonists of the GLP-1 and glucagon receptors. Biochemical Pharmacology, 2020, 180, 114150.	4.4	23

#	Article	lF	CITATION
19	Protein Kinase D and $G\hat{I}^2\hat{I}^3$ Subunits Mediate Agonist-evoked Translocation of Protease-activated Receptor-2 from the Golgi Apparatus to the Plasma Membrane. Journal of Biological Chemistry, 2016, 291, 11285-11299.	3.4	19
20	Protein kinase D and $\hat{Gl^2l^3}$ mediate sustained nociceptive signaling by biased agonists of protease-activated receptor-2. Journal of Biological Chemistry, 2019, 294, 10649-10662.	3.4	10
21	Implications of ligand-receptor binding kinetics on GLP-1R signalling. Biochemical Pharmacology, 2022, 199, 114985.	4.4	5
22	Chemical Synthesis and Characterization of a Nonfibrillating Glycoglucagon. Bioconjugate Chemistry, 2021, 32, 2148-2153.	3.6	2