
Hyojung Cha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7269158/publications.pdf Version: 2024-02-01

HYOLLING CHA

#	Article	IF	CITATIONS
1	Enhanced photocatalytic hydrogen evolution from organic semiconductor heterojunction nanoparticles. Nature Materials, 2020, 19, 559-565.	27.5	366
2	An Efficient, "Burn in―Free Organic Solar Cell Employing a Nonfullerene Electron Acceptor. Advanced Materials, 2017, 29, 1701156.	21.0	175
3	Exceptionally low charge trapping enables highly efficient organic bulk heterojunction solar cells. Energy and Environmental Science, 2020, 13, 2422-2430.	30.8	152
4	Complementary Absorbing Starâ€Shaped Small Molecules for the Preparation of Ternary Cascade Energy Structures in Organic Photovoltaic Cells. Advanced Functional Materials, 2013, 23, 1556-1565.	14.9	138
5	Tracking Charge Transfer to Residual Metal Clusters in Conjugated Polymers for Photocatalytic Hydrogen Evolution. Journal of the American Chemical Society, 2020, 142, 14574-14587.	13.7	118
6	Influence of Blend Morphology and Energetics on Charge Separation and Recombination Dynamics in Organic Solar Cells Incorporating a Nonfullerene Acceptor. Advanced Functional Materials, 2018, 28, 1704389.	14.9	84
7	Alkyl Chain Length Dependence of the Field-Effect Mobility in Novel Anthracene Derivatives. ACS Applied Materials & Interfaces, 2015, 7, 351-358.	8.0	80
8	Effects of direct solvent exposure on the nanoscale morphologies and electrical characteristics of PCBM-based transistors and photovoltaics. Journal of Materials Chemistry, 2012, 22, 5543.	6.7	79
9	Solvent Additive to Achieve Highly Ordered Nanostructural Semicrystalline DPP Copolymers: Toward a High Charge Carrier Mobility. Advanced Materials, 2013, 25, 7003-7009.	21.0	71
10	Toward Improved Environmental Stability of Polymer:Fullerene and Polymer:Nonfullerene Organic Solar Cells: A Common Energetic Origin of Light- and Oxygen-Induced Degradation. ACS Energy Letters, 2019, 4, 846-852.	17.4	71
11	Tail state limited photocurrent collection of thick photoactive layers in organic solar cells. Nature Communications, 2019, 10, 5159.	12.8	65
12	Correlating Charge-Transfer State Lifetimes with Material Energetics in Polymer:Non-Fullerene Acceptor Organic Solar Cells. Journal of the American Chemical Society, 2021, 143, 7599-7603.	13.7	59
13	A Comparison of Charge Carrier Dynamics in Organic and Perovskite Solar Cells. Advanced Materials, 2022, 34, e2101833.	21.0	55
14	Suppression of Recombination Losses in Polymer:Nonfullerene Acceptor Organic Solar Cells due to Aggregation Dependence of Acceptor Electron Affinity. Advanced Energy Materials, 2019, 9, 1901254.	19.5	54
15	3,6-Carbazole Incorporated into Poly[9,9-dioctylfluorene- <i>alt</i> -(bisthienyl)benzothiadiazole]s Improving the Power Conversion Efficiency. Macromolecules, 2012, 45, 3004-3009.	4.8	41
16	Exciton and Charge Carrier Dynamics in Highly Crystalline PTQ10:IDIC Organic Solar Cells. Advanced Energy Materials, 2020, 10, 2001149.	19.5	40
17	Toward Visibly Transparent Organic Photovoltaic Cells Based on a Near-Infrared Harvesting Bulk Heterojunction Blend. ACS Applied Materials & Interfaces, 2020, 12, 32764-32770.	8.0	40
18	Synthesis and Transistor Properties of Asymmetric Oligothiophenes: Relationship between Molecular Structure and Device Performance. Chemistry - A European Journal, 2013, 19, 14052-14060.	3.3	39

Ηγοјυνς Cha

#	Article	IF	CITATIONS
19	Enhancing Light Absorption and Prolonging Charge Separation in Carbon Quantum Dots <i>via</i> Cl-Doping for Visible-Light-Driven Photocharge-Transfer Reactions. ACS Applied Materials & Interfaces, 2021, 13, 34648-34657.	8.0	39
20	Effects of selenophene substitution on the mobility and photovoltaic efficiency of polyquaterthiophene-based organic solar cells. Organic Electronics, 2010, 11, 899-904.	2.6	38
21	Efficient and photostable ternary organic solar cells with a narrow band gap non-fullerene acceptor and fullerene additive. Journal of Materials Chemistry A, 2020, 8, 6682-6691.	10.3	37
22	Non-fullerene acceptor photostability and its impact on organic solar cell lifetime. Cell Reports Physical Science, 2021, 2, 100498.	5.6	35
23	Effects of Cyano-Substituents on the Molecular Packing Structures of Conjugated Polymers for Bulk-Heterojunction Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 15774-15782.	8.0	33
24	Oligoethylene Glycol Side Chains Increase Charge Generation in Organic Semiconductor Nanoparticles for Enhanced Photocatalytic Hydrogen Evolution. Advanced Materials, 2022, 34, e2105007.	21.0	33
25	A composite of a graphene oxide derivative as a novel sensing layer in an organic field-effect transistor. Journal of Materials Chemistry C, 2014, 2, 4539-4544.	5.5	32
26	The binding energy and dynamics of charge-transfer states in organic photovoltaics with low driving force for charge separation. Journal of Chemical Physics, 2019, 150, 104704.	3.0	32
27	All-Small-Molecule Solar Cells Incorporating NDI-Based Acceptors: Synthesis and Full Characterization. ACS Applied Materials & amp; Interfaces, 2017, 9, 44667-44677.	8.0	29
28	Solutionâ€Processed Organic Photovoltaic Cells with Anthracene Derivatives. ChemSusChem, 2010, 3, 742-748.	6.8	26
29	Photopatternable, highly conductive and low work function polymer electrodes for high-performance n-type bottom contact organic transistors. Organic Electronics, 2011, 12, 516-519.	2.6	24
30	Rational design of a neutral pH functional and stable organic photocathode. Chemical Communications, 2018, 54, 5732-5735.	4.1	24
31	Thermally stable organic bulk heterojunction photovoltaic cells incorporating an amorphous fullerene derivative as an electron acceptor. Solar Energy Materials and Solar Cells, 2011, 95, 432-439.	6.2	22
32	An Analysis of the Factors Determining the Efficiency of Photocurrent Generation in Polymer:Nonfullerene Acceptor Solar Cells. Advanced Energy Materials, 2018, 8, 1801537.	19.5	22
33	Simultaneously Grasping and Selfâ€Organizing Photoactive Polymers for Highly Reproducible Organic Solar Cells with Improved Efficiency. Advanced Energy Materials, 2013, 3, 1018-1024.	19.5	21
34	Molecular aggregation–performance relationship in the design of novel cyclohexylethynyl end-capped quaterthiophenes for solution-processed organic transistors. Dyes and Pigments, 2013, 96, 756-762.	3.7	21
35	Understanding Structure–Property Relationships in All-Small-Molecule Solar Cells Incorporating a Fullerene or Nonfullerene Acceptor. ACS Applied Materials & Interfaces, 2018, 10, 36037-36046.	8.0	21
36	Organic cathode interfacial materials for non-fullerene organic solar cells. Journal of Materials Chemistry A, 2021, 9, 13506-13514.	10.3	21

Ηγοјυνς Сна

#	Article	IF	CITATIONS
37	Reconciling models of interfacial state kinetics and device performance in organic solar cells: impact of the energy offsets on the power conversion efficiency. Energy and Environmental Science, 2022, 15, 1256-1270.	30.8	21
38	Improved n-type bottom-contact organic transistors by introducing a poly(3,4-ethylenedioxythiophene):poly(4-styrene sulfonate) coating on the source/drain electrodes. Applied Physics Letters, 2010, 97, 103304.	3.3	20
39	Lowâ€bandgap quinoxalineâ€based D–Aâ€ŧype copolymers: Synthesis, characterization, and photovoltaic properties. Journal of Polymer Science Part A, 2013, 51, 372-382.	2.3	19
40	ldentifying the Molecular Origins of High-Performance in Organic Photodetectors Based on Highly Intermixed Bulk Heterojunction Blends. ACS Nano, 2021, 15, 1217-1228.	14.6	19
41	Thin Film Morphology Control via a Mixed Solvent System for High-Performance Organic Thin Film Transistors. Science of Advanced Materials, 2013, 5, 1323-1327.	0.7	19
42	Amorphous Thieno[3,2- <i>b</i>]thiophene and Benzothiadiazole Based Copolymers for Organic Photovoltaics. ACS Applied Materials & Interfaces, 2014, 6, 20510-20518.	8.0	18
43	Efficient polymer solar cells based on dialkoxynaphthalene and benzo[c][1,2,5]thiadiazole: A new approach for simple donor–acceptor pair. Solar Energy Materials and Solar Cells, 2011, 95, 1678-1685.	6.2	17
44	Molecular design and ordering effects of alkoxy aromatic donor in a DPP copolymer on OTFTs and OPVs. Materials Chemistry and Physics, 2015, 153, 63-71.	4.0	16
45	Thermally stable amorphous polymeric semiconductors containing fluorene and thiophene for use in organic photovoltaic cells. Organic Electronics, 2010, 11, 1534-1542.	2.6	14
46	A side chain-modified quaterthiophene derivative for enhancing the performance of organic solar cell devices. Journal of Materials Chemistry, 2012, 22, 15141.	6.7	14
47	Covalent grafting of molecular catalysts on C ₃ N _x H _y as robust, efficient and well-defined photocatalysts for solar fuel synthesis. Chemical Science, 2020, 11, 8425-8432.	7.4	14
48	Synthesis and characterization of naphtho[2,1-b:3,4-b′]dithiophene-based polymers with extended Ï€-conjugation systems for use in bulk heterojunction polymer solar cells. Journal of Polymer Science Part A, 2013, 51, 4742-4751.	2.3	13
49	Dithieno[3,2- <i>b</i> :2′,3′- <i>d</i>]arsole-containing conjugated polymers in organic photovoltaic devices. Dalton Transactions, 2019, 48, 6676-6679.	3.3	13
50	Novel alkoxyanthracene donor and benzothiadiazole acceptor for organic thin film transistor and bulk heterojunction organic photovoltaic cells. Journal of Polymer Science Part A, 2014, 52, 1306-1314.	2.3	12
51	Effects of Bulk Heterojunction Morphology Control via Thermal Annealing on the Fill Factor of Anthracene-based Polymer Solar Cells. Macromolecular Research, 2020, 28, 820-825.	2.4	12
52	Solvent boiling point affects the crystalline properties and performances of anthradithiophene-based devices. Dyes and Pigments, 2015, 114, 60-68.	3.7	11
53	New dithienophosphole-based donor–acceptor alternating copolymers: Synthesis and structure property relationships in OFET. Dyes and Pigments, 2016, 125, 316-322.	3.7	9
54	Ternary blends to achieve well-developed nanoscale morphology in organic bulk heterojunction solar cells. Organic Electronics, 2017, 45, 263-272.	2.6	9

Ηγοјυνς Сна

#	Article	IF	CITATIONS
55	Morphology Driven by Molecular Structure of Thiazoleâ€Based Polymers for Use in Fieldâ€Effect Transistors and Solar Cells. Chemistry - A European Journal, 2019, 25, 649-656.	3.3	9
56	Development of bulk heterojunction morphology by the difference of intermolecular interaction behaviors. Organic Electronics, 2014, 15, 3558-3567.	2.6	8
57	Synthesis and characterization of poly(dialkylterthiophene-bithiophene) and poly(dialkylterthiophene-thienothiophene) for organic thin film transistors and organic photovoltaic cells. Synthetic Metals, 2013, 185-186, 159-166.	3.9	7
58	Synthesis and characterization of an ester-terminated organic semiconductor for ethanol vapor detection. Organic Electronics, 2014, 15, 2277-2284.	2.6	6
59	Ambipolar charge transport of diketopyrrolepyrrole-silole-based copolymers and effect of side chain engineering: Compact model parameter extraction strategy for high-voltage logic applications. Organic Electronics, 2018, 54, 1-8.	2.6	6
60	Aceneâ€Modified Smallâ€Molecule Donors for Organic Photovoltaics. Chemistry - A European Journal, 2019, 25, 12316-12324.	3.3	5
61	Synthesis of triarylamine-based alternating copolymers for polymeric solar cell. Polymer, 2014, 55, 4837-4845.	3.8	4
62	Covalent Networking of a Conjugatedâ€Polymer Photocatalyst to Promote Exciton Diffusion in the Aqueous Phase for Efficient Hydrogen Production. Small Methods, 2022, 6, e2200010.	8.6	4
63	Organic Solar Cells: Exciton and Charge Carrier Dynamics in Highly Crystalline PTQ10:IDIC Organic Solar Cells (Adv. Energy Mater. 38/2020). Advanced Energy Materials, 2020, 10, 2070158.	19.5	2
64	Aceneâ€Modified Smallâ€Molecule Donors for Organic Photovoltaics. Chemistry - A European Journal, 2019, 25, 12233-12233.	3.3	0
65	Synthesis and characterization of polythiophene containing side chain electron acceptor for OPV. Molecular Crystals and Liquid Crystals, 0, , 1-10.	0.9	Ο