Katrien Descheemaeker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7268801/publications.pdf

Version: 2024-02-01

100 papers 3,677 citations

34 h-index 56 g-index

102 all docs 102 docs citations

102 times ranked 3195 citing authors

#	Article	IF	CITATIONS
1	Integrated soil fertility management in sub-Saharan Africa: unravelling local adaptation. Soil, 2015, 1, 491-508.	4.9	263
2	Sediment deposition and pedogenesis in exclosures in the Tigray highlands, Ethiopia. Geoderma, 2006, 132, 291-314.	5.1	180
3	Runoff on slopes with restoring vegetation: A case study from the Tigray highlands, Ethiopia. Journal of Hydrology, 2006, 331, 219-241.	5.4	170
4	Impact of soil and water conservation measures on catchment hydrological response—a case in north Ethiopia. Hydrological Processes, 2010, 24, 1880-1895.	2.6	167
5	The future of farming: Who will produce our food?. Food Security, 2021, 13, 1073-1099.	5.3	167
6	Characterising the diversity of smallholder farming systems and their constraints and opportunities for innovation: A case study from the Northern Region, Ghana. Njas - Wageningen Journal of Life Sciences, 2016, 78, 153-166.	7.7	124
7	Litter production and organic matter accumulation in exclosures of the Tigray highlands, Ethiopia. Forest Ecology and Management, 2006, 233, 21-35.	3.2	106
8	Climate change adaptation and mitigation in smallholder crop–livestock systems in sub-Saharan Africa: a call for integrated impact assessments. Regional Environmental Change, 2016, 16, 2331-2343.	2.9	100
9	Capturing farm diversity with hypothesis-based typologies: An innovative methodological framework for farming system typology development. PLoS ONE, 2018, 13, e0194757.	2.5	99
10	Pathways for sustainable development of mixed crop livestock systems: Taking a livestock and pro-poor approach. Livestock Science, 2011, 139, 11-21.	1.6	87
11	De-mystifying family farming: Features, diversity and trends across the globe. Global Food Security, 2015, 5, 11-18.	8.1	84
12	Environmental conditions and human drivers for changes to north Ethiopian mountain landscapes over 145 years. Science of the Total Environment, 2014, 485-486, 164-179.	8.0	81
13	Climate change and maize yield in southern Africa: what can farm management do?. Global Change Biology, 2015, 21, 4588-4601.	9.5	81
14	Improving water productivity in mixed crop–livestock farming systems of sub-Saharan Africa. Agricultural Water Management, 2010, 97, 579-586.	5.6	73
15	Small farms and development in sub-Saharan Africa: Farming for food, for income or for lack of better options?. Food Security, 2021, 13, 1431-1454.	5.3	72
16	A comparison of statistical and participatory clustering of smallholder farming systems – A case study in Northern Ghana. Journal of Rural Studies, 2016, 45, 184-198.	4.7	66
17	Nitrogen cycling in summer active perennial grass systems in South Australia: non-symbiotic nitrogen fixation. Crop and Pasture Science, 2014, 65, 1044.	1.5	54
18	Effects of region-wide soil and water conservation in semi-arid areas: the case of northern Ethiopia. Zeitschrift FA¼r Geomorphologie, 2008, 52, 291-315.	0.8	49

#	Article	IF	Citations
19	Runoff curve numbers for steep hillslopes with natural vegetation in semiâ€arid tropical highlands, northern Ethiopia. Hydrological Processes, 2008, 22, 4097-4105.	2.6	48
20	Modelling cereal crops to assess future climate risk for family food self-sufficiency in southern Mali. Field Crops Research, 2017, 201, 133-145.	5.1	48
21	Co-learning cycles to support the design of innovative farm systems in southern Mali. European Journal of Agronomy, 2017, 89, 61-74.	4.1	48
22	Economic trade-offs of biomass use in crop-livestock systems: Exploring more sustainable options in semi-arid Zimbabwe. Agricultural Systems, 2015, 134, 48-60.	6.1	46
23	Livestock water productivity in mixed crop–livestock farming systems of the Blue Nile basin: Assessing variability and prospects for improvement. Agricultural Systems, 2009, 102, 33-40.	6.1	45
24	Tillage, mulch and fertiliser impacts on soil nitrogen availability and maize production in semi-arid Zimbabwe. Soil and Tillage Research, 2017, 168, 125-132.	5.6	45
25	Is maize-cowpea intercropping a viable option for smallholder farms in the risky environments of semi-arid southern Africa?. Field Crops Research, 2017, 209, 73-87.	5.1	43
26	Unravelling the causes of variability in crop yields and treatment responses for better tailoring of options for sustainable intensification in southern Mali. Field Crops Research, 2016, 187, 113-126.	5.1	42
27	Effects of climate change and adaptation on the livestock component of mixed farming systems: A modelling study from semi-arid Zimbabwe. Agricultural Systems, 2018, 159, 282-295.	6.1	42
28	WHICH OPTIONS FIT BEST? OPERATIONALIZING THE SOCIO-ECOLOGICAL NICHE CONCEPT. Experimental Agriculture, 2019, 55, 169-190.	0.9	42
29	Selection of crop cultivars suited to the location combined with astute management can reduce crop yield penalties in pasture cropping systems. Crop and Pasture Science, 2014, 65, 1022.	1.5	42
30	Changes in water flows and water productivity upon vegetation regeneration on degraded hillslopes in northern Ethiopia: a water balance modelling exercise. Rangeland Journal, 2009, 31, 237.	0.9	41
31	Are traditional home gardens in southern Ethiopia heading for extinction? Implications for productivity, plant species richness and food security. Agriculture, Ecosystems and Environment, 2018, 252, 1-13.	5.3	40
32	Exploring solution spaces for nutrition-sensitive agriculture in Kenya and Vietnam. Agricultural Systems, 2020, 180, 102774.	6.1	38
33	Cost-benefit analysis of soil and water conservation measure: The case of exclosures in northern Ethiopia. Forest Policy and Economics, 2012, 15, 27-36.	3.4	37
34	Model results versus farmer realities. Operationalizing diversity within and among smallholder farm systems for a nuanced impact assessment of technology packages. Agricultural Systems, 2018, 162, 164-178.	6.1	37
35	Understanding farm trajectories and development pathways: Two decades of change in southern Mali. Agricultural Systems, 2015, 139, 210-222.	6.1	36
36	Food availability and livelihood strategies among rural households across Uganda. Food Security, 2017, 9, 1385-1403.	5. 3	36

#	Article	IF	Citations
37	Avenues for improving farming sustainability assessment with upgraded tools, sustainability framing and indicators. A review. Agronomy for Sustainable Development, 2021, 41, 1.	5.3	36
38	Can soil bunds increase the production of rain-fed lowland rice in south eastern Tanzania?. Agricultural Water Management, 2007, 89, 229-235.	5.6	34
39	CLIMATE VARIABILITY AND CHANGE IN SOUTHERN MALI: LEARNING FROM FARMER PERCEPTIONS AND ON-FARM TRIALS. Experimental Agriculture, 2015, 51, 615-634.	0.9	34
40	Home garden system dynamics in Southern Ethiopia. Agroforestry Systems, 2018, 92, 1579-1595.	2.0	34
41	Vulnerability and adaptation options to climate change for rural livelihoods – A country-wide analysis for Uganda. Agricultural Systems, 2019, 176, 102663.	6.1	30
42	Humus Form Development during Forest Restoration in Exclosures of the Tigray Highlands, Northern Ethiopia. Restoration Ecology, 2009, 17, 280-289.	2.9	29
43	Evaluation of climate adaptation options for Sudano-Sahelian cropping systems. Field Crops Research, 2014, 156, 63-75.	5.1	28
44	Farmers' use and adaptation of improved climbing bean production practices in the highlands of Uganda. Agriculture, Ecosystems and Environment, 2018, 261, 186-200.	5.3	28
45	ANALYSIS OF GAPS AND POSSIBLE INTERVENTIONS FOR IMPROVING WATER PRODUCTIVITY IN CROP LIVESTOCK SYSTEMS OF ETHIOPIA. Experimental Agriculture, 2011, 47, 21-38.	0.9	27
46	Can yield variability be explained? Integrated assessment of maize yield gaps across smallholders in Ghana. Field Crops Research, 2019, 236, 132-144.	5.1	27
47	Transhumance in the Tigray Highlands (Ethiopia). Mountain Research and Development, 2009, 29, 255-264.	1.0	26
48	IRRIGATION WATER PRODUCTIVITY AS AFFECTED BY WATER MANAGEMENT IN A SMALL-SCALE IRRIGATION SCHEME IN THE BLUE NILE BASIN, ETHIOPIA. Experimental Agriculture, 2011, 47, 39-55.	0.9	24
49	Effects of integrated watershed management on livestock water productivity in water scarce areas in Ethiopia. Physics and Chemistry of the Earth, 2010, 35, 723-729.	2.9	23
50	Two rapid appraisals of FAO-56 crop coefficients for semiarid natural vegetation of the northern Ethiopian highlands. Journal of Arid Environments, 2011, 75, 353-359.	2.4	23
51	Comment on "Modelling the effect of soil and water conservation practices in Tigray, Ethiopia― [Agric. Ecosyst. Environ. 105 (2005) 29–40]. Agriculture, Ecosystems and Environment, 2006, 114, 407-411.	5.3	22
52	Climate change impacts and adaptation for dryland farming systems in Zimbabwe: a stakeholder-driven integrated multi-model assessment. Climatic Change, 2021, 168, 1.	3.6	22
53	Waking the Sleeping Giant: Agricultural intensification, extensification or stagnation in Mali's Guinea Savannah. Agricultural Systems, 2016, 148, 58-70.	6.1	21
54	ARE FARMERS SEARCHING FOR AN AFRICAN GREEN REVOLUTION? EXPLORING THE SOLUTION SPACE FOR AGRICULTURAL INTENSIFICATION IN SOUTHERN MALI. Experimental Agriculture, 2019, 55, 288-310.	0.9	21

#	Article	IF	CITATIONS
55	Harnessing benefits from improved livestock water productivity in crop–livestock systems of sub-Saharan Africa: synthesis. Rangeland Journal, 2009, 31, 169.	0.9	21
56	Integrated crop-livestock systems \hat{a} a key to sustainable intensification in Africa. Tropical Grasslands - Forrajes Tropicales, 2013, 1, 202.	0.5	21
57	ASSESSMENT OF THE LIVESTOCK-FEED AND WATER NEXUS ACROSS A MIXED CROP-LIVESTOCK SYSTEM'S INTENSIFICATION GRADIENT: AN EXAMPLE FROM THE INDO-GANGA BASIN. Experimental Agriculture, 2011, 47, 113-132.	0.9	20
58	Effects of technical interventions on flexibility of farming systems in Burkina Faso: Lessons for the design of innovations in West Africa. Agricultural Systems, 2015, 136, 125-137.	6.1	20
59	Understanding spatial patterns of soils for sustainable agriculture in northern Ethiopia's tropical mountains. PLoS ONE, 2019, 14, e0224041.	2.5	19
60	Motivations for the use of sustainable intensification practices among smallholder farmers in Tanzania and Malawi. Njas - Wageningen Journal of Life Sciences, 2019, 89, 1-10.	7.7	19
61	Agricultural intensification and policy interventions: Exploring plausible futures for smallholder farmers in Southern Mali. Land Use Policy, 2018, 70, 623-634.	5.6	18
62	Summer-growing perennial grasses are a potential new feed source in the low rainfall environment of southern Australia. Crop and Pasture Science, 2014, 65, 1033.	1.5	16
63	Living income benchmarking of rural households in low-income countries. Food Security, 2021, 13, 729-749.	5.3	16
64	Land Degradation in the Ethiopian Highlands. World Geomorphological Landscapes, 2015, , 369-385.	0.3	15
65	Diversity in perception and management of farming risks in southern Mali. Agricultural Systems, 2020, 184, 102905.	6.1	15
66	YIELD GAPS AND RESOURCE USE ACROSS FARMING ZONES IN THE CENTRAL RIFT VALLEY OF ETHIOPIA. Experimental Agriculture, 2016, 52, 493-517.	0.9	14
67	"That is my farm―– An integrated co-learning approach for whole-farm sustainable intensification in smallholder farming. Agricultural Systems, 2021, 188, 103041.	6.1	14
68	Crop–Livestock Intensification in the Face of Climate Change: Exploring Opportunities to Reduce Risk and Increase Resilience in Southern Africa by Using an Integrated Multi-modeling Approach. ICP Series on Climate Change Impacts, Adaptation, and Mitigation, 2015, , 159-198.	0.4	13
69	Using household survey data to identify large-scale food security patterns across Uganda. PLoS ONE, 2018, 13, e0208714.	2.5	12
70	Farmer research networks in principle and practice. International Journal of Agricultural Sustainability, 2022, 20, 247-264.	3.5	12
71	Gully cutâ€andâ€fill cycles as related to agroâ€management: a historical curve number simulation in the Tigray Highlands. Earth Surface Processes and Landforms, 2015, 40, 796-808.	2.5	11
72	LIVESTOCK WATER PRODUCTIVITY IN A WATER STRESSED ENVIRONMENT IN NORTHERN ETHIOPIA. Experimental Agriculture, 2011, 47, 85-98.	0.9	9

#	Article	IF	Citations
73	Variability in yield responses, physiological use efficiencies and recovery fractions of fertilizer use in maize in Ethiopia. European Journal of Agronomy, 2021, 124, 126228.	4.1	9
74	Simulation of water-limited growth of the forage shrub saltbush (Atriplex nummularia Lindl.) in a low-rainfall environment of southern Australia. Crop and Pasture Science, 2014, 65, 1068.	1.5	9
75	COMPARISON OF LANDUSE AND LANDCOVER CHANGES, DRIVERS AND IMPACTS FOR A MOISTURE-SUFFICIENT AND DROUGHT-PRONE REGION IN THE ETHIOPIAN HIGHLANDS. Experimental Agriculture, 2011, 47, 71-83.	0.9	8
76	Using AgMIP Regional Integrated Assessment Methods to Evaluate Vulnerability, Resilience and Adaptive Capacity for Climate Smart Agricultural Systems. Natural Resource Management and Policy, 2018, , 307-333.	0.3	8
77	Developing the role of perennial forages for crop–livestock farms: a strategic multi-disciplinary approach. Crop and Pasture Science, 2014, 65, 945.	1.5	8
78	Risk management options in maize cropping systems in semi-arid areas of Southern Africa. Field Crops Research, 2018, 228, 110-121.	5.1	7
79	Limits of conservation agriculture in Africa. Nature Food, 2020, 1, 402-402.	14.0	7
80	Understanding the Role of Soils and Management on Crops in the Face of Climate Uncertainty in Zimbabwe: A Sensitivity Analysis., 2019,, 49-64.		6
81	What Farm Size Sustains a Living? Exploring Future Options to Attain a Living Income From Smallholder Farming in the East African Highlands. Frontiers in Sustainable Food Systems, 2022, 5, .	3.9	6
82	Narrowing crop yield gaps in Ethiopia under current and future climate: A model-based exploration of intensification options and their trade-offs with the water balance. Field Crops Research, 2022, 278, 108442.	5.1	6
83	How do climbing beans fit in farming systems of the eastern highlands of Uganda? Understanding opportunities and constraints at farm level. Agricultural Systems, 2018, 165, 97-110.	6.1	5
84	Climate-smart crop production: understanding complexity for achieving triple-wins. Burleigh Dodds Series in Agricultural Science, 2020, , .	0.2	5
85	Allometric equations for yield predictions of enset (<i>Ensete ventricosum</i>) and khat (<i>Catha) Tj ETQq1 1 0</i>	.784314 ı 2.5	rgBT /Overlo
86	Assessment of lifetime performance of small ruminants under different feeding systems. Animal, 2017, 11, 881-889.	3.3	4
87	Manure matters: prospects for regional banana-livestock integration for sustainable intensification in South-West Uganda. International Journal of Agricultural Sustainability, 2022, 20, 821-843.	3.5	4
88	Integrated Assessment of Crop–Livestock Production Systems Beyond Biophysical Methods. , 2017, , 257-278.		3
89	Crop-livestock integration to enhance ecosystem services in sustainable food systems. , 2020, , 141-169.		3
90	Micro-livestock in smallholder farming systems: the role, challenges and opportunities for cavies in South Kivu, eastern DR Congo. Tropical Animal Health and Production, 2020, 52, 1167-1177.	1.4	3

#	Article	IF	CITATIONS
91	Transforming Smallholder Crop–Livestock Systems in the Face of Climate Change: Stakeholder-Driven Multi-Model Research in Semi-Arid Zimbabwe. , 2021, , 217-276.		3
92	Livestock-Water Productivity in the Nile Basin: Solutions for Emerging Challenges., 2011,, 297-320.		3
93	Managing biomass in semi-arid Burkina Faso: Strategies and levers for better crop and livestock production in contrasted farm systems. Agricultural Systems, 2022, 201, 103458.	6.1	3
94	Hydrological Context of Water Scarcity and Storage on the Mountain Ridges in Dogu'a Tembien. GeoGuide, 2019, , 197-213.	1.0	2
95	Exclosures as Primary Option for Reforestation in Dogu'a Tembien. GeoGuide, 2019, , 251-259.	1.0	2
96	Intercropping of climbing bean (<i>Phaseolus vulgaris</i> , L.) and East African highland banana (<i>Musa spp.</i>) in the Ugandan highlands. Experimental Agriculture, 2021, 57, 1-14.	0.9	2
97	Indifferent to difference? Understanding the unequal impacts of farming technologies among smallholders. A review. Agronomy for Sustainable Development, 2022, 42, .	5.3	2
98	Growing cotton to produce food: Unravelling interactions between value chains in southern Mali. Development Policy Review, 2022, 40, .	1.8	1
99	Farmers' Perceptions and their Implications to Climate-Proof Food Security Programmes. , 2021, , 1-25.		O
100	Farmers' Perceptions and their Implications to Climate-Proof Food Security Programmes. , 2021, , 4353-4377.		0