
Keisuke Shoji

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7268529/publications.pdf Version: 2024-02-01

KEISUKE SHOU

#	Article	IF	CITATIONS
1	Potential for small RNA production against Bombyx mori latent virus in Bombyx mori ovaries. Archives of Insect Biochemistry and Physiology, 2021, 106, e21761.	1.5	7
2	CRISPR/Cas9-mediated mutagenesis of Ago2 and Siwi in silkworm cultured cells. Gene, 2021, 768, 145314.	2.2	4
3	Dynamic subcellular compartmentalization ensures fidelity of piRNA biogenesis in silkworms. EMBO Reports, 2021, 22, e51342.	4.5	12
4	H3K4me3 histone modification in baculovirus-infected silkworm cells. Virus Genes, 2021, 57, 459-463.	1.6	3
5	Cell-free reconstitution reveals the molecular mechanisms for the initiation of secondary siRNA biogenesis in plants. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	23
6	Whole-genome sequencing and comparative transcriptome analysis of Bombyx mori nucleopolyhedrovirus La strain. Virus Genes, 2020, 56, 249-259.	1.6	6
7	Zucchini consensus motifs determine the mechanism of pre-piRNA production. Nature, 2020, 578, 311-316.	27.8	70
8	VCP Machinery Mediates Autophagic Degradation of Empty Argonaute. Cell Reports, 2019, 28, 1144-1153.e4.	6.4	23
9	Mascâ€induced dosage compensation in silkworm cultured cells. FEBS Open Bio, 2019, 9, 1573-1579.	2.3	15
10	Iruka Eliminates Dysfunctional Argonaute by Selective Ubiquitination of Its Empty State. Molecular Cell, 2019, 73, 119-129.e5.	9.7	35
11	Transcriptome profiling reveals infection strategy of an insect maculavirus. DNA Research, 2018, 25, 277-286.	3.4	26
12	InÂvivo masculinizing function of the Ostrinia furnacalis Masculinizer gene. Biochemical and Biophysical Research Communications, 2018, 503, 1768-1772.	2.1	21
13	Artificial "ping-pong―cascade of PIWI-interacting RNA in silkworm cells. Rna, 2017, 23, 86-97.	3.5	10
14	Identification and Functional Analysis of the Pre-piRNA 3′ Trimmer in Silkworms. Cell, 2016, 164, 962-973.	28.9	159
15	The Endosymbiotic Bacterium Wolbachia Selectively Kills Male Hosts by Targeting the Masculinizing Gene. PLoS Pathogens, 2015, 11, e1005048.	4.7	73
16	Sexually biased transcripts at early embryonic stages of the silkworm depend on the sex chromosome constitution. Gene, 2015, 560, 50-56.	2.2	8
17	ls the expression of sense and antisense transgenes really sufficient for artificial piRNA production?. Current Biology, 2015, 25, R708-R710.	3.9	6
18	Silkworm HP1a transcriptionally enhances highly expressed euchromatic genes via association with their transcription start sites. Nucleic Acids Research, 2014, 42, 11462-11471.	14.5	12

#	Article	IF	CITATIONS
19	A single female-specific piRNA is the primary determiner of sex in the silkworm. Nature, 2014, 509, 633-636.	27.8	407
20	Characterization of a novel chromodomain-containing gene from the silkworm, Bombyx mori. Gene, 2013, 527, 649-654.	2.2	8
21	The comprehensive epigenome map of piRNA clusters. Nucleic Acids Research, 2013, 41, 1581-1590.	14.5	29