
Christos Chinopoulos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7268417/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Proline Oxidation Supports Mitochondrial ATP Production When Complex I Is Inhibited. International Journal of Molecular Sciences, 2022, 23, 5111.	4.1	12
2	Low oxygen levels can help to prevent the detrimental effect of acute warming on mitochondrial efficiency in fish. Biology Letters, 2021, 17, 20200759.	2.3	14
3	The Mystery of Extramitochondrial Proteins Lysine Succinylation. International Journal of Molecular Sciences, 2021, 22, 6085.	4.1	18
4	Bioenergetic consequences of FoF1–ATP synthase/ATPase deficiency in two life cycle stages of Trypanosoma brucei. Journal of Biological Chemistry, 2021, 296, 100357.	3.4	19
5	Can the Mitochondrial Metabolic Theory Explain Better the Origin and Management of Cancer than Can the Somatic Mutation Theory?. Metabolites, 2021, 11, .	2.9	4
6	Can the Mitochondrial Metabolic Theory Explain Better the Origin and Management of Cancer than Can the Somatic Mutation Theory?. Metabolites, 2021, 11, 572.	2.9	21
7	Ant1 mutant mice bridge the mitochondrial and serotonergic dysfunctions in bipolar disorder. Molecular Psychiatry, 2020, 25, 2203-2204.	7.9	3
8	Human-Specific ARHGAP11B Acts in Mitochondria to Expand Neocortical Progenitors by Glutaminolysis. Neuron, 2020, 105, 867-881.e9.	8.1	101
9	Quantification of mitochondrial DNA from peripheral tissues: Limitations in predicting the severity of neurometabolic disorders and proposal of a novel diagnostic test. Molecular Aspects of Medicine, 2020, 71, 100834.	6.4	2
10	From Glucose to Lactate and Transiting Intermediates Through Mitochondria, Bypassing Pyruvate Kinase: Considerations for Cells Exhibiting Dimeric PKM2 or Otherwise Inhibited Kinase Activity. Frontiers in Physiology, 2020, 11, 543564.	2.8	10
11	On the Origin of ATP Synthesis in Cancer. IScience, 2020, 23, 101761.	4.1	65
12	Consideration of Ketogenic Metabolic Therapy as a Complementary or Alternative Approach for Managing Breast Cancer. Frontiers in Nutrition, 2020, 7, 21.	3.7	35
13	Glutaminases as a Novel Target for SDHB-Associated Pheochromocytomas/Paragangliomas. Cancers, 2020, 12, 599.	3.7	15
14	Acute sources of mitochondrial NAD+ during respiratory chain dysfunction. Experimental Neurology, 2020, 327, 113218.	4.1	22
15	Exclusive neuronal detection of KGDHC-specific subunits in the adult human brain cortex despite pancellular protein lysine succinylation. Brain Structure and Function, 2020, 225, 639-667.	2.3	10
16	INTEGRAL ANALYSIS OF GENOMIC AND TRANSCRIPTOMIC CHANGES IN CLEAR CELL RENAL CELL CARCINOMA IN THE RUSSIAN POPULATION. Siberian Journal of Oncology, 2020, 18, 39-49.	0.3	0
17	Succinate in ischemia: Where does it come from?. International Journal of Biochemistry and Cell Biology, 2019, 115, 105580.	2.8	41
18	Therapeutic benefit of combining calorie-restricted ketogenic diet and glutamine targeting in late-stage experimental glioblastoma. Communications Biology, 2019, 2, 200.	4.4	83

#	Article	IF	CITATIONS
19	The Effect of 2-Ketobutyrate on Mitochondrial Substrate-Level Phosphorylation. Neurochemical Research, 2019, 44, 2301-2306.	3.3	21
20	Mutated SUCLG1 causes mislocalization of SUCLG2 protein, morphological alterations of mitochondria and an early-onset severe neurometabolic disorder. Molecular Genetics and Metabolism, 2019, 126, 43-52.	1,1	20
21	Response to "Leigh-like syndrome with mild mtDNA depletion due to the SUCLG1 variant c.626C>A― Molecular Genetics and Metabolism Reports, 2019, 18, 10.	1.1	1
22	Decreased mitochondrial metabolic requirements in fasting animals carry an oxidative cost. Functional Ecology, 2018, 32, 2149-2157.	3.6	60
23	Perturbation of the yeast mitochondrial lipidome and associated membrane proteins following heterologous expression of Artemia-ANT. Scientific Reports, 2018, 8, 5915.	3.3	3
24	Functional cyclophilin D moderates platelet adhesion, but enhances the lytic resistance of fibrin. Scientific Reports, 2018, 8, 5366.	3.3	5
25	Mycoplasma infection and hypoxia initiate succinate accumulation and release in the VM-M3 cancer cells. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 975-983.	1.0	24
26	Mitochondrial permeability transition pore: Back to the drawing board. Neurochemistry International, 2018, 117, 49-54.	3.8	50
27	The effect of 2-ketobutyrate on mitochondrial substrate level phosphorylation. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, e100-e101.	1.0	1
28	Mitochondrial Substrate-Level Phosphorylation as Energy Source for Glioblastoma: Review and Hypothesis. ASN Neuro, 2018, 10, 175909141881826.	2.7	80
29	Decisive role of mitochondrial substrate level phosphorylation on the survival of glutaminolytic cancer cells. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, e102.	1.0	0
30	The RCR and ATP/O Indices Can Give Contradictory Messages about Mitochondrial Efficiency. Integrative and Comparative Biology, 2018, 58, 486-494.	2.0	24
31	Reduction of 2-methoxy-1,4-naphtoquinone by mitochondrially-localized Nqo1 yielding NAD+ supports substrate-level phosphorylation during respiratory inhibition. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 909-924.	1.0	12
32	OXPHOS Defects Due to mtDNA Mutations: Glutamine to the Rescue!. Cell Metabolism, 2018, 27, 1165-1167.	16.2	8
33	Divalent cation chelators citrate and EDTA unmask an intrinsic uncoupling pathway in isolated mitochondria. Journal of Bioenergetics and Biomembranes, 2017, 49, 3-11.	2.3	6
34	Cyclophilin D regulates lifespan and protein expression of aging markers in the brain of mice. Mitochondrion, 2017, 34, 115-126.	3.4	9
35	Catabolism of GABA, succinic semialdehyde or gamma-hydroxybutyrate through the GABA shunt impair mitochondrial substrate-level phosphorylation. Neurochemistry International, 2017, 109, 41-53.	3.8	35
36	<scp>ATP</scp> synthase complex and the mitochondrial permeability transition pore: poles of attraction. EMBO Reports, 2017, 18, 1041-1042.	4.5	9

#	Article	IF	CITATIONS
37	Two transgenic mouse models for β-subunit components of succinate-CoA ligase yielding pleiotropic metabolic alterations. Biochemical Journal, 2016, 473, 3463-3485.	3.7	26
38	The total and mitochondrial lipidome of Artemia franciscana encysted embryos. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 1727-1735.	2.4	3
39	Simultaneous measurement of mitochondrial respiration and <scp>ATP</scp> production in tissue homogenates and calculation of effective P/O ratios. Physiological Reports, 2016, 4, e13007.	1.7	30
40	Alterations in voltage-sensing of the mitochondrial permeability transition pore in ANT1-deficient cells. Scientific Reports, 2016, 6, 26700.	3.3	33
41	Succinate, an intermediate in metabolism, signal transduction, ROS, hypoxia, and tumorigenesis. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 1086-1101.	1.0	395
42	Abolition of mitochondrial substrateâ€level phosphorylation by itaconic acid produced by LPSâ€induced <i>lrg1</i> expression in cells of murine macrophage lineage. FASEB Journal, 2016, 30, 286-300.	0.5	100
43	Localization of SUCLA2 and SUCLG2 subunits of succinyl CoA ligase within the cerebral cortex suggests the absence of matrix substrate-level phosphorylation in glial cells of the human brain. Journal of Bioenergetics and Biomembranes, 2015, 47, 33-41.	2.3	10
44	Cyclophilin D disruption attenuates lipopolysaccharide-induced inflammatory response in primary mouse macrophages. Biochemistry and Cell Biology, 2015, 93, 241-250.	2.0	19
45	Molecular mechanisms of cell death: central implication of ATP synthase in mitochondrial permeability transition. Oncogene, 2015, 34, 1475-1486.	5.9	244
46	Exclusive neuronal expression of SUCLA2 in the human brain. Brain Structure and Function, 2015, 220, 135-151.	2.3	17
47	What Makes You Can also Break You, Part III: Mitochondrial Permeability Transition Pore Formation by an Uncoupling Channel within the C-Subunit Ring of the F1FO ATP Synthase?. Frontiers in Oncology, 2014, 4, 235.	2.8	16
48	Mitochondrial diaphorases as NAD ⁺ donors to segments of the citric acid cycle that support substrateâ€level phosphorylation yielding ATP during respiratory inhibition. FASEB Journal, 2014, 28, 1682-1697.	0.5	33
49	Measurement of ADP–ATP Exchange in Relation to Mitochondrial Transmembrane Potential and Oxygen Consumption. Methods in Enzymology, 2014, 542, 333-348.	1.0	26
50	Which way does the citric acid cycle turn during hypoxia? The critical role of αâ€ketoglutarate dehydrogenase complex. Journal of Neuroscience Research, 2013, 91, 1030-1043.	2.9	105
51	The negative impact of <i>α</i> â€ketoglutarate dehydrogenase complex deficiency on matrix substrateâ€level phosphorylation. FASEB Journal, 2013, 27, 2392-2406.	0.5	57
52	What makes you can also break you: mitochondrial permeability transition pore formation by the c subunit of the F1F0 ATP-synthase?. Frontiers in Oncology, 2013, 3, 25.	2.8	10
53	What Makes You Can Also Break You, Part II: Mitochondrial Permeability Transition Pore Formation by Dimers of the F1FO ATP-Synthase?. Frontiers in Oncology, 2013, 3, 140.	2.8	6
54	The Suppressor of AAC2 Lethality SAL1 Modulates Sensitivity of Heterologously Expressed Artemia ADP/ATP Carrier to Bongkrekate in Yeast. PLoS ONE, 2013, 8, e74187.	2.5	7

#	Article	IF	CITATIONS
55	Modulation of the mitochondrial permeability transition by cyclophilin D: Moving closer to F0–F1 ATP synthase?. Mitochondrion, 2012, 12, 41-45.	3.4	34
56	Quantitative measurement of mitochondrial membrane potential in cultured cells: calciumâ€induced de― and hyperpolarization of neuronal mitochondria. Journal of Physiology, 2012, 590, 2845-2871.	2.9	172
57	Absence of Ca2+-Induced Mitochondrial Permeability Transition but Presence of Bongkrekate-Sensitive Nucleotide Exchange in C. crangon and P. serratus. PLoS ONE, 2012, 7, e39839.	2.5	14
58	A distinct sequence in the adenine nucleotide translocase from <i>Artemia franciscana</i> embryos is associated with insensitivity to bongkrekate and atypical effects of adenine nucleotides on Ca ²⁺ uptake and sequestration. FEBS Journal, 2011, 278, 822-836.	4.7	16
59	Modulation of F ₀ F ₁ â€ATP synthase activity by cyclophilin D regulates matrix adenine nucleotide levels. FEBS Journal, 2011, 278, 1112-1125.	4.7	45
60	Mitochondrial consumption of cytosolic ATP: Not so fast. FEBS Letters, 2011, 585, 1255-1259.	2.8	67
61	Isolation and Functional Assessment of Mitochondria from Small Amounts of Mouse Brain Tissue. Methods in Molecular Biology, 2011, 793, 311-324.	0.9	42
62	The "B Space―of mitochondrial phosphorylation. Journal of Neuroscience Research, 2011, 89, 1897-1904.	2.9	34
63	adPEO mutations in ANT1 impair ADP-ATP translocation in muscle mitochondria. Human Molecular Genetics, 2011, 20, 2964-2974.	2.9	32
64	Complex Contribution of Cyclophilin D to Ca2+-induced Permeability Transition in Brain Mitochondria, with Relation to the Bioenergetic State. Journal of Biological Chemistry, 2011, 286, 6345-6353.	3.4	27
65	A kinetic assay of mitochondrial ADP–ATP exchange rate in permeabilized cells. Analytical Biochemistry, 2010, 407, 52-57.	2.4	28
66	The â€~ins and outs' of Ca ²⁺ in mitochondria. FEBS Journal, 2010, 277, 3621-3621.	4.7	2
67	Mitochondrial Ca ²⁺ sequestration and precipitation revisited. FEBS Journal, 2010, 277, 3637-3651.	4.7	62
68	Forward operation of adenine nucleotide translocase during F ₀ F ₁ â€ATPase reversal: critical role of matrix substrateâ€level phosphorylation. FASEB Journal, 2010, 24, 2405-2416.	0.5	91
69	Mitochondria as ATP consumers in cellular pathology. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2010, 1802, 221-227.	3.8	109
70	Mitochondria deficient in complex I activity are depolarized by hydrogen peroxide in nerve terminals: relevance to Parkinson's disease. Journal of Neurochemistry, 2009, 76, 302-306.	3.9	62
71	A reâ€evaluation of the role of matrix acidification in uncouplerâ€induced Ca ²⁺ release from mitochondria. FEBS Journal, 2009, 276, 2713-2724.	4.7	19
72	Modeling of ATP–ADP steadyâ€state exchange rate mediated by the adenine nucleotide translocase in isolated mitochondria. FEBS Journal, 2009, 276, 6942-6955.	4.7	47

#	Article	IF	CITATIONS
73	A Novel Kinetic Assay of Mitochondrial ATP-ADP Exchange Rate Mediated by the ANT. Biophysical Journal, 2009, 96, 2490-2504.	0.5	87
74	Emergence of a spermine-sensitive, non-inactivating conductance in mature hippocampal CA1 pyramidal neurons upon reduction of extracellular Ca2+: Dependence on intracellular Mg2+ and ATP. Neurochemistry International, 2007, 50, 148-158.	3.8	13
75	Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends in Pharmacological Sciences, 2006, 27, 639-645.	8.7	521
76	Calcium, mitochondria and oxidative stress in neuronal pathology. Novel aspects of an enduring theme. FEBS Journal, 2006, 273, 433-450.	4.7	226
77	Diacylglycerols Activate Mitochondrial Cationic Channel(s) and Release Sequestered Ca2+. Journal of Bioenergetics and Biomembranes, 2005, 37, 237-247.	2.3	13
78	Inhibition of glutamate-induced delayed calcium deregulation by 2-APB and La3+ in cultured cortical neurones. Journal of Neurochemistry, 2004, 91, 471-483.	3.9	41
79	Mitochondrial calcium and oxidative stress as mediators of ischemic brain injury. Cell Calcium, 2004, 36, 257-264.	2.4	298
80	Protection Against Ischemic Brain Injury by Inhibition of Mitochondrial Oxidative Stress. Journal of Bioenergetics and Biomembranes, 2004, 36, 347-352.	2.3	137
81	Mitochondrial α-Ketoglutarate Dehydrogenase Complex Generates Reactive Oxygen Species. Journal of Neuroscience, 2004, 24, 7779-7788.	3.6	626
82	Characterization of the N-acetylaspartate biosynthetic enzyme from rat brain. Journal of Neurochemistry, 2003, 86, 824-835.	3.9	116
83	Cyclosporin A-insensitive Permeability Transition in Brain Mitochondria. Journal of Biological Chemistry, 2003, 278, 27382-27389.	3.4	123
84	Mitochondrial Mechanisms of Neural Cell Death and Neuroprotective Interventions in Parkinson's Disease. Annals of the New York Academy of Sciences, 2003, 991, 111-119.	3.8	216
85	Enhanced Depolarization-Evoked Calcium Signal and Reduced [ATP]/[ADP] Ratio Are Unrelated Events Induced by Oxidative Stress in Synaptosomes. Journal of Neurochemistry, 2002, 69, 2529-2537.	3.9	42
86	Depolarization of In Situ Mitochondria Due to Hydrogen Peroxide-Induced Oxidative Stress in Nerve Terminals. Journal of Neurochemistry, 2002, 73, 220-228.	3.9	147
87	Exacerbated Responses to Oxidative Stress by an Na+Load in Isolated Nerve Terminals: the Role of ATP Depletion and Rise of [Ca2+]i. Journal of Neuroscience, 2000, 20, 2094-2103.	3.6	73
88	Reversible depolarization of in situ mitochondria by oxidative stress parallels a decrease in NAD(P)H level in nerve terminals. Neurochemistry International, 2000, 36, 483-488.	3.8	10
89	Depolarization of in Situ Mitochondria by Hydrogen Peroxide in Nerve Terminals. Annals of the New York Academy of Sciences, 1999, 893, 269-272.	3.8	7
90	Plasma Membrane Depolarization and Disturbed Na+Homeostasis Induced by the Protonophore Carbonyl Cyanide-p-trifluoromethoxyphenyl-hydrazon in Isolated Nerve Terminals. Molecular Pharmacology, 1998, 53, 734-741.	2.3	48