Nina Neuhaus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7267572/publications.pdf

Version: 2024-02-01

686830 610482 24 636 13 24 h-index citations g-index papers 29 29 29 700 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Spermatogonial stem cells: updates from specification to clinical relevance. Human Reproduction Update, 2019, 25, 275-297.	5.2	90
2	Testicular Functions and Clinical Characterization of Patients with Gender Dysphoria (GD) Undergoing Sex Reassignment Surgery (SRS). Journal of Sexual Medicine, 2015, 12, 2190-2200.	0.3	81
3	A combined approach facilitates the reliable detection of human spermatogonia in vitro. Human Reproduction, 2013, 28, 3012-3025.	0.4	71
4	Bi-allelic Mutations in M1AP Are a Frequent Cause of Meiotic Arrest and Severely Impaired Spermatogenesis Leading to Male Infertility. American Journal of Human Genetics, 2020, 107, 342-351.	2.6	68
5	Separation of somatic and germ cells is required to establish primate spermatogonial cultures. Human Reproduction, 2014, 29, 2018-2031.	0.4	55
6	Single-cell RNA-seq unravels alterations of the human spermatogonial stem cell compartment in patients with impaired spermatogenesis. Cell Reports Medicine, 2021, 2, 100395.	3. 3	33
7	High-resolution analysis of germ cells from men with sex chromosomal aneuploidies reveals normal transcriptome but impaired imprinting. Clinical Epigenetics, 2019, 11, 127.	1.8	30
8	<i>De novo</i> methylation in male germ cells of the common marmoset monkey occurs during postnatal development and is maintained <i>in vitro</i> . Epigenetics, 2017, 12, 527-539.	1.3	26
9	The sperm epigenome does not display recurrent epimutations in patients with severely impaired spermatogenesis. Clinical Epigenetics, 2020, 12, 61.	1.8	23
10	Options for Fertility Treatments for Trans Women in Germany. Journal of Clinical Medicine, 2019, 8, 730.	1.0	20
11	Stem cell–based options to preserve male fertility. Science, 2019, 363, 1283-1284.	6.0	19
12	Profiling of Cxcl12 Receptors, Cxcr4 and Cxcr7 in Murine Testis Development and a Spermatogenic Depletion Model Indicates a Role for Cxcr7 in Controlling Cxcl12 Activity. PLoS ONE, 2014, 9, e112598.	1.1	16
13	Comparison of enzymatic digestion and mechanical dissociation of human testicular tissues. Fertility and Sterility, 2015, 104, 302-311.e3.	0.5	13
14	The C-X-C signalling system in the rodent vs primate testis: impact on germ cell niche interaction. Reproduction, 2018, 155, R211-R219.	1.1	12
15	Whole-genome methylation analysis of testicular germ cells from cryptozoospermic men points to recurrent and functionally relevant DNA methylation changes. Clinical Epigenetics, 2021, 13, 160.	1.8	12
16	Developmental expression patterns of chemokines CXCL11, CXCL12 and their receptor CXCR7 in testes of common marmoset and human. Cell and Tissue Research, 2015, 361, 885-898.	1.5	11
17	Development and Disease-Dependent Dynamics of Spermatogonial Subpopulations in Human Testicular Tissues. Journal of Clinical Medicine, 2020, 9, 224.	1.0	11
18	Characterization and population dynamics of germ cells in adult macaque testicular cultures. PLoS ONE, 2019, 14, e0218194.	1.1	8

#	Article	IF	CITATIONS
19	Reply: Pluripotent very small embryonic-like stem cells co-exist along with spermatogonial stem cells in adult mammalian testis. Human Reproduction Update, 2020, 26, 139-139.	5.2	8
20	Z-scores for comparative analyses of spermatogonial numbers throughout human development. Fertility and Sterility, 2021, 116, 713-720.	0.5	8
21	Early testicular maturation is sensitive to depletion of spermatogonial pool in sickle cell disease. Haematologica, 2022, 107, 975-979.	1.7	8
22	Male germline stem cells in non-human primates. Primate Biology, 2017, 4, 173-184.	0.6	5
23	Serum and intratesticular inhibin B, AMH, and spermatogonial numbers in trans women at genderâ€confirming surgery: An observational study. Andrology, 2021, 9, 1781-1789.	1.9	4
24	New Insights Into Extended Steroid Hormone Profiles in Transwomen in a Multi-Center Setting in Germany. Journal of Sexual Medicine, 2021, 18, 1807-1817.	0.3	0