
Sylvia Mansilla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7267365/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Sp1 transcription factor: A long-standing target in cancer chemotherapy. , 2015, 152, 111-124.		295
2	Mitotic Catastrophe Results in Cell Death by Caspase-Dependentand Caspase-Independent Mechanisms. Cell Cycle, 2006, 5, 53-60.	1.3	123
3	Mechanisms of Drug-Induced Mitotic Catastrophe in Cancer Cells. Current Pharmaceutical Design, 2010, 16, 69-78.	0.9	112
4	Daunorubicin-induced variations in gene transcription: commitment to proliferation arrest, senescence and apoptosis. Biochemical Journal, 2003, 372, 703-711.	1.7	52
5	Mitotic Catastrophe as a Consequence of Chemotherapy. Anti-Cancer Agents in Medicinal Chemistry, 2006, 6, 589-602.	0.9	51
6	Cell Death Pathways in Response to Antitumor Therapy. Tumori, 2009, 95, 409-421.	0.6	45
7	Chemotherapeutic Targeting of Cell Death Pathways. Anti-Cancer Agents in Medicinal Chemistry, 2012, 12, 226-238.	0.9	42
8	Sp1 transcription factor as a target for anthracyclines: Effects on gene transcription. Biochimie, 2008, 90, 976-987.	1.3	39
9	Induction of G2/M arrest and inhibition of c-myc and p53 transcription by WP631 in Jurkat T lymphocytes. Biochemical Pharmacology, 2002, 63, 1251-1258.	2.0	32
10	The activity of a novel mithramycin analog is related to its binding to DNA, cellular accumulation, and inhibition of Sp1-driven gene transcription. Chemico-Biological Interactions, 2014, 219, 123-132.	1.7	31
11	A nuclear budding mechanism in transiently arrested cells generates drug-sensitive and drug-resistant cells. Biochemical Pharmacology, 2009, 78, 123-132.	2.0	30
12	Sp1-Targeted Inhibition of Gene Transcription by WP631 in Transfected Lymphocytesâ€. Biochemistry, 2004, 43, 7584-7592.	1.2	24
13	A comparative analysis of the time-dependent antiproliferative effects of daunorubicin and WP631. FEBS Journal, 2003, 270, 764-770.	0.2	22
14	Circumvention of the multidrug-resistance protein (MRP-1) by an antitumor drug through specific inhibition of gene transcription in breast tumor cells. Biochemical Pharmacology, 2007, 73, 934-942.	2.0	20
15	Transcriptional changes facilitate mitotic catastrophe in tumour cells that contain functional p53. European Journal of Pharmacology, 2006, 540, 34-45.	1.7	18
16	Novel mithramycins abrogate the involvement of protein factors in the transcription of cell cycle control genes. Biochemical Pharmacology, 2012, 84, 1133-1142.	2.0	16
17	Compounds of emerging concern as new plant stressors linked to water reuse and biosolid application in agriculture. Journal of Environmental Chemical Engineering, 2021, 9, 105198.	3.3	14
18	Promoter-specific inhibition of transcription by daunorubicin in Saccharomyces cerevisiae. Biochemical Journal, 2002, 368, 131-136.	1.7	12

Sylvia Mansilla

#	Article	IF	CITATIONS
19	Differential inhibition of restriction enzyme cleavage by chromophore-modified analogues of the antitumour antibiotics mithramycin and chromomycin reveals structure–activity relationships. Biochemical Pharmacology, 2010, 79, 1418-1427.	2.0	12
20	Apoptotic-like death occurs through a caspase-independent route in colon carcinoma cells undergoing mitotic catastrophe. Cancer Letters, 2012, 326, 114-121.	3.2	11
21	Occurrence of DNA Sequences Specifically Recognized by Drugs in Human Promoters. Journal of Biomolecular Structure and Dynamics, 2002, 19, 669-679.	2.0	4
22	Autophagy modulates the effects of bisâ€anthracycline WP 631 on p53â€deficient prostate cancer cells. Journal of Cellular and Molecular Medicine, 2015, 19, 786-798.	1.6	4
23	Changes in gene expression induced by Sp1 knockdown differ from those caused by challenging Sp1 binding to gene promoters. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2011, 1809, 327-336.	0.9	3