Adam Heller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7267343/publications.pdf

Version: 2024-02-01

170 papers 19,667 citations

9756 73 h-index 138 g-index

174 all docs

174 docs citations

174 times ranked

12777 citing authors

#	Article	IF	CITATIONS
1	Electrochemical Glucose Sensors and Their Applications in Diabetes Management. Chemical Reviews, 2008, 108, 2482-2505.	23.0	1,406
2	Electrical wiring of redox enzymes. Accounts of Chemical Research, 1990, 23, 128-134.	7.6	815
3	Miniature biofuel cells. Physical Chemistry Chemical Physics, 2004, 6, 209.	1.3	636
4	Electrical connection of enzyme redox centers to electrodes. The Journal of Physical Chemistry, 1992, 96, 3579-3587.	2.9	594
5	Direct electrical communication between chemically modified enzymes and metal electrodes. I. Electron transfer from glucose oxidase to metal electrodes via electron relays, bound covalently to the enzyme. The Journal of Physical Chemistry, 1987, 91, 1285-1289.	2.9	583
6	Characteristics of a Miniature Compartment-less Glucoseâ^O2Biofuel Cell and Its Operation in a Living Plant. Journal of the American Chemical Society, 2003, 125, 6588-6594.	6.6	534
7	Electrode Degradation in Lithium-Ion Batteries. ACS Nano, 2020, 14, 1243-1295.	7.3	484
8	Cross-linked redox gels containing glucose oxidase for amperometric biosensor applications. Analytical Chemistry, 1990, 62, 258-263.	3.2	463
9	A Miniature Biofuel Cell. Journal of the American Chemical Society, 2001, 123, 8630-8631.	6.6	431
10	Direct electrical communication between chemically modified enzymes and metal electrodes. 2. Methods for bonding electron-transfer relays to glucose oxidase and D-amino-acid oxidase. Journal of the American Chemical Society, 1988, 110, 2615-2620.	6.6	399
11	Long Tethers Binding Redox Centers to Polymer Backbones Enhance Electron Transport in Enzyme "Wiring―Hydrogels. Journal of the American Chemical Society, 2003, 125, 4951-4957.	6.6	382
12	"Wired" Enzyme Electrodes for Amperometric Determination of Glucose or Lactate in the Presence of Interfering Substances. Analytical Chemistry, 1994, 66, 2451-2457.	3.2	364
13	Electron transfer between glucose oxidase and electrodes via redox mediators bound with flexible chains to the enzyme surface. Journal of the American Chemical Society, 1991, 113, 1394-1397.	6.6	360
14	Electrical communication between redox centers of glucose oxidase and electrodes via electrostatically and covalently bound redox polymers. Journal of the American Chemical Society, 1989, 111, 2357-2358.	6.6	340
15	Electron-conducting redox hydrogels: design, characteristics and synthesis. Current Opinion in Chemical Biology, 2006, 10, 664-672.	2.8	317
16	Beyond Doping and Coating: Prospective Strategies for Stable High-Capacity Layered Ni-Rich Cathodes. ACS Energy Letters, 2020, 5, 1136-1146.	8.8	313
17	α-Fe ₂ O ₃ Nanorods as Anode Material for Lithium Ion Batteries. Journal of Physical Chemistry Letters, 2011, 2, 2885-2891.	2.1	306
18	A Four-Electron O2-Electroreduction Biocatalyst Superior to Platinum and a Biofuel Cell Operating at 0.88 V. Journal of the American Chemical Society, 2004, 126, 8368-8369.	6.6	303

#	Article	IF	Citations
19	A Miniature Biofuel Cell Operating in A Physiological Buffer. Journal of the American Chemical Society, 2002, 124, 12962-12963.	6.6	293
20	Redox polymer films containing enzymes. 1. A redox-conducting epoxy cement: synthesis, characterization, and electrocatalytic oxidation of hydroquinone. The Journal of Physical Chemistry, 1991, 95, 5970-5975.	2.9	280
21	Glucose electrodes based on cross-linked bis(2,2'-bipyridine)chloroosmium(+/2+) complexed poly(1-vinylimidazole) films. Analytical Chemistry, 1993, 65, 3512-3517.	3.2	262
22	Photocatalytic Oxidation of Organic Molecules at TiO2 Particles by Sunlight in Aerated Water. Journal of the Electrochemical Society, 1992, 139, 113-118.	1.3	254
23	Redox polymer films containing enzymes. 2. Glucose oxidase containing enzyme electrodes. The Journal of Physical Chemistry, 1991, 95, 5976-5980.	2.9	227
24	Electrochemistry in Diabetes Management. Accounts of Chemical Research, 2010, 43, 963-973.	7.6	218
25	The "Wired―Laccase Cathode: High Current Density Electroreduction of O2to Water at +0.7 V (NHE) at pH 5. Journal of the American Chemical Society, 2001, 123, 5802-5803.	6.6	212
26	An Oxygen Cathode Operating in a Physiological Solution. Journal of the American Chemical Society, 2002, 124, 6480-6486.	6.6	210
27	Implanted Electrochemical Glucose Sensors for the Management of Diabetes. Annual Review of Biomedical Engineering, 1999, 1, 153-175.	5.7	206
28	Oxygen Is Electroreduced to Water on a "Wired―Enzyme Electrode at a Lesser Overpotential than on Platinum. Journal of the American Chemical Society, 2003, 125, 15290-15291.	6.6	201
29	Electroreduction of O2to Water on the "Wired―Laccase Cathodeâ€. Journal of Physical Chemistry B, 2001, 105, 11917-11921.	1.2	192
30	A Laccase-Wiring Redox Hydrogel for Efficient Catalysis of O2Electroreduction. Journal of Physical Chemistry B, 2006, 110, 11180-11187.	1.2	189
31	Scanning electrochemical microscopy. 24. Enzyme ultramicroelectrodes for the measurement of hydrogen peroxide at surfaces. Analytical Chemistry, 1993, 65, 3605-3614.	3.2	184
32	Stability of Oxidases Immobilized in Silica Gels. Journal of the American Chemical Society, 1998, 120, 4582-4585.	6.6	181
33	High current density "wired" quinoprotein glucose dehydrogenase electrode. Analytical Chemistry, 1993, 65, 238-241.	3.2	178
34	Simple Synthesis of Nanocrystalline Tin Sulfide/N-Doped Reduced Graphene Oxide Composites as Lithium Ion Battery Anodes. ACS Nano, 2016, 10, 10778-10788.	7.3	178
35	Nanocolumnar Germanium Thin Films as a High-Rate Sodium-Ion Battery Anode Material. Journal of Physical Chemistry C, 2013, 117, 18885-18890.	1.5	175
36	Potentially implantable miniature batteries. Analytical and Bioanalytical Chemistry, 2006, 385, 469-473.	1.9	168

#	Article	IF	Citations
37	Transition metal-doped Ni-rich layered cathode materials for durable Li-ion batteries. Nature Communications, 2021, 12, 6552.	5.8	167
38	Photo-crosslinked copolymers of 2-hydroxyethyl methacrylate, poly(ethylene glycol) tetra-acrylate and ethylene dimethacrylate for improving biocompatibility of biosensors. Biomaterials, 1995, 16, 389-396.	5.7	162
39	Improving the Stability of Nanostructured Silicon Thin Film Lithium-Ion Battery Anodes through Their Controlled Oxidation. ACS Nano, 2012, 6, 2506-2516.	7.3	160
40	Enzyme-Amplified Amperometric Detection of 3000 Copies of DNA in a 10-Î ¹ / ₄ L Droplet at 0.5 fM Concentration. Analytical Chemistry, 2003, 75, 3267-3269.	3.2	150
41	Nanostructured Si _(1-<i>x</i>) Ge _{<i>x</i>} for Tunable Thin Film Lithium-lon Battery Anodes. ACS Nano, 2013, 7, 2249-2257.	7.3	150
42	Amperometric glucose microelectrodes prepared through immobilization of glucose oxidase in redox hydrogels. Analytical Chemistry, 1991, 63, 2268-2272.	3.2	146
43	A Miniature Membrane-less Biofuel Cell Operating under Physiological Conditions at 0.5 V. Journal of the Electrochemical Society, 2003, 150, A209.	1.3	146
44	On the Relationship between the Characteristics of Bilirubin Oxidases and O2 Cathodes Based on Their "Wiring― Journal of Physical Chemistry B, 2002, 106, 8842-8848.	1.2	145
45	A Miniature Membrane-less Biofuel Cell Operating at +0.60 V under Physiological Conditions. ChemBioChem, 2004, 5, 1703-1705.	1.3	140
46	A miniature biofuel cell operating at 0.78 V. Chemical Communications, 2003, , 518-519.	2.2	137
47	Enzyme-Amplified Amperometric Sandwich Test for RNA and DNA. Analytical Chemistry, 2002, 74, 158-162.	3.2	136
48	Design and Optimization of a Selective Subcutaneously Implantable Glucose Electrode Based on "Wired" Glucose Oxidase. Analytical Chemistry, 1995, 67, 1240-1244.	3.2	129
49	Elimination of electrooxidizable interferant-produced currents in amperometric biosensors. Analytical Chemistry, 1992, 64, 2889-2896.	3.2	126
50	Simple Synthesis of Nanostructured Sn/Nitrogen-Doped Carbon Composite Using Nitrilotriacetic Acid as Lithium Ion Battery Anode. Chemistry of Materials, 2016, 28, 1343-1347.	3.2	122
51	Polyacrylamide-Based Redox Polymer for Connecting Redox Centers of Enzymes to Electrodes. Analytical Chemistry, 1995, 67, 1332-1338.	3.2	121
52	Electrochemical Glucose and Lactate Sensors Based on "Wired―Thermostable Soybean Peroxidase Operating Continuously and Stably at 37 °C. Analytical Chemistry, 1997, 69, 1054-1060.	3.2	117
53	Screen Printing of Nucleic Acid Detecting Carbon Electrodes. Analytical Chemistry, 2002, 74, 4370-4377.	3.2	117
54	Biocompatible, glucose-permeable hydrogel for in situ coating of implantable biosensors. Biomaterials, 1997, 18, 1665-1670.	5.7	116

#	Article	IF	CITATIONS
55	In Situ Optical Imaging of Sodium Electrodeposition: Effects of Fluoroethylene Carbonate. ACS Energy Letters, 2017, 2, 2051-2057.	8.8	116
56	On the parameters affecting the characteristics of the "wired―glucose oxidase anode. Journal of Electroanalytical Chemistry, 2005, 574, 347-357.	1.9	113
57	Electrodeposition of Redox Polymers and Co-Electrodeposition of Enzymes by Coordinative Crosslinking This research was supported by the Welch Foundation and by the US Army Research Laboratory Angewandte Chemie - International Edition, 2002, 41, 810.	7.2	111
58	An Electron-Conducting Cross-Linked Polyaniline-Based Redox Hydrogel, Formed in One Step at pH 7.2, Wires Glucose Oxidase. Journal of the American Chemical Society, 2007, 129, 7006-7007.	6.6	110
59	Electron diffusion coefficients in hydrogels formed of cross-linked redox polymers. The Journal of Physical Chemistry, 1993, 97, 11014-11019.	2.9	109
60	Electroreduction of O2 to water at 0.6 V (SHE) at pH 7 on the †wired†Pleurotus ostreatus laccase cathode. Biosensors and Bioelectronics, 2002, 17, 1071-1074.	5.3	104
61	Design, Characterization, and One-Point in vivo Calibration of a Subcutaneously Implanted Glucose Electrode. Analytical Chemistry, 1994, 66, 3131-3138.	3.2	103
62	A Miniature Membraneless Biofuel Cell Operating at 0.36 V under Physiological Conditions. Journal of the Electrochemical Society, 2003, 150, A1136.	1.3	101
63	Effect of Quaternization of the Glucose Oxidase "Wiring―Redox Polymer on the Maximum Current Densities of Glucose Electrodes. The Journal of Physical Chemistry, 1996, 100, 3719-3727.	2.9	98
64	"Wiring―of glucose oxidase within a hydrogel made with polyvinyl imidazole complexed with [(Os-4,4′-dimethoxy-2,2′-bipyridine)Cl]+/2+1. Journal of Electroanalytical Chemistry, 1995, 396, 511-515.	1.9	95
65	<i>In situ</i> formation of a multicomponent inorganic-rich SEI layer provides a fast charging and high specific energy Li-metal battery. Journal of Materials Chemistry A, 2019, 7, 17782-17789.	5.2	95
66	Direct Electrical Communication between Graphite Electrodes and Surface Adsorbed Glucose Oxidase/Redox Polymer Complexes. Angewandte Chemie International Edition in English, 1990, 29, 82-84.	4.4	91
67	Effect of quaternization on electron diffusion coefficients for redox hydrogels based on poly(4-vinylpyridine). The Journal of Physical Chemistry, 1995, 99, 5102-5110.	2.9	86
68	Loss of Activity or Gain in Stability of Oxidases upon Their Immobilization in Hydrated Silica:Â Significance of the Electrostatic Interactions of Surface Arginine Residues at the Entrances of the Reaction Channels. Journal of the American Chemical Society, 1998, 120, 4586-4590.	6.6	86
69	A Simple Synthesis of an Nâ€Doped Carbon ORR Catalyst: Hierarchical Micro/Meso/Macro Porosity and Graphitic Shells. Chemistry - A European Journal, 2016, 22, 501-505.	1.7	86
70	Capacity Degradation Mechanism and Cycling Stability Enhancement of AlF ₃ -Coated Nanorod Gradient Na[Ni _{0.65} Co _{0.08} Mn _{0.27}]O ₂ Cathode for Sodium-Ion Batteries. ACS Nano, 2018, 12, 12912-12922.	7.3	82
71	Recent Developments in Dendrite-Free Lithium-Metal Deposition through Tailoring of Micro- and Nanoscale Artificial Coatings. ACS Nano, 2021, 15, 29-46.	7.3	80
72	On the stability of the "wired―bilirubin oxidase oxygen cathode in serum. Bioelectrochemistry, 2006, 68, 22-26.	2.4	77

#	Article	IF	Citations
73	In Situ Assembled Mass-Transport Controlling Micromembranes and Their Application in Implanted Amperometric Glucose Sensors. Analytical Chemistry, 2000, 72, 3757-3763.	3.2	72
74	K ⁺ Reduces Lithium Dendrite Growth by Forming a Thin, Less-Resistive Solid Electrolyte Interphase. ACS Energy Letters, 2016, 1, 414-419.	8.8	72
75	SnO2 and TiO2-supported-SnO2 lithium battery anodes with improved electrochemical performance. Journal of Materials Chemistry, 2012, 22, 11134.	6.7	70
76	Accuracy of the One-Point in Vivo Calibration of "Wired―Glucose Oxidase Electrodes Implanted in Jugular Veins of Rats in Periods of Rapid Rise and Decline of the Glucose Concentration. Analytical Chemistry, 1998, 70, 2149-2155.	3.2	63
77	FreeStyleâ,,¢: A Small-Volume Electrochemical Glucose Sensor for Home Blood Glucose Testing. Diabetes Technology and Therapeutics, 2000, 2, 221-229.	2.4	63
78	Optimization Of "Wired―Enzyme O2-Electroreduction Catalyst Compositions by Scanning Electrochemical Microscopy. Angewandte Chemie - International Edition, 2004, 43, 6355-6357.	7.2	62
79	Operation of a Miniature Redox Hydrogel-Based Pyruvate Sensor in Undiluted Deoxygenated Calf Serum. Analytical Chemistry, 2000, 72, 2963-2968.	3.2	61
80	Facile Synthesis of Ge/N-Doped Carbon Spheres with Varying Nitrogen Content for Lithium Ion Battery Anodes. ACS Applied Materials & Samp; Interfaces, 2016, 8, 27788-27794.	4.0	59
81	Carbon Nitride Transforms into a High Lithium Storage Capacity Nitrogen-Rich Carbon. ACS Nano, 2019, 13, 9279-9291.	7.3	58
82	â€~Wiring' of glucose oxidase and lactate oxidase within a hydrogel made with poly(vinyl pyridine) complexed with [Os(4,4′-dimethoxy-2,2′-bipyridine)2Cl]+/2+. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 4131-4136.	1.7	53
83	Effects of Water, Salt Water, and Silicone Overcoating of the TiO2 Photocatalyst on the Rates and Products of Photocatalytic Oxidation of Liquid 3-Octanol and 3-Octanone. Environmental Science & Environmental Science & Environmental Science & Environmental Science & Environmental Science	4.6	53
84	Storage of Lithium in Hydrothermally Synthesized GeO ₂ Nanoparticles. Journal of Physical Chemistry Letters, 2013, 4, 999-1004.	2.1	53
85	On the Non-Uniform Distribution of Guanine in Introns of Human Genes: Possible Protection of Exons against Oxidation by Proximal Intron Poly-G Sequencesâ€. Journal of Physical Chemistry B, 2001, 105, 11859-11865.	1.2	52
86	Stabilization of a Highly Ni-Rich Layered Oxide Cathode through Flower-Petal Grain Arrays. ACS Nano, 2020, 14, 17142-17150.	7.3	50
87	Li- and Na-reduction products of meso-Co ₃ O ₄ form high-rate, stably cycling battery anode materials. Journal of Materials Chemistry A, 2014, 2, 14209-14221.	5.2	48
88	Ionic Conduction in Zn3(PO4)2·4H2O Enables Efficient Discharge of the Zinc Anode in Serum. Journal of the American Chemical Society, 2005, 127, 14590-14591.	6.6	46
89	A Miniature, Nongassing Electroosmotic Pump Operating at 0.5 V. Journal of the American Chemical Society, 2011, 133, 2374-2377.	6.6	46
90	Nanorod Gradient Cathode: Preventing Electrolyte Penetration into Cathode Particles. ACS Applied Energy Materials, 2019, 2, 6002-6011.	2.5	45

#	Article	IF	Citations
91	The effect of local lithium surface chemistry and topography on solid electrolyte interphase composition and dendrite nucleation. Journal of Materials Chemistry A, 2019, 7, 14882-14894.	5.2	45
92	Stabilization of Wired Glucose Oxidase Anodes Rotating at 1000 rpm at $37 {\hat A}^{\circ} C$. Journal of the Electrochemical Society, 1999, 146, 2965-2967.	1.3	44
93	Rapid Amperometric Verification of PCR Amplification of DNA. Analytical Chemistry, 1999, 71, 535-538.	3.2	42
94	Sources of instability of â€~wired' enzyme anodes in serum: urate and transition metal ions. Journal of Electroanalytical Chemistry, 2001, 500, 604-611.	1.9	42
95	Reduction of the Nonspecific Binding of a Target Antibody and of Its Enzyme-Labeled Detection Probe Enabling Electrochemical Immunoassay of an Antibody through the 7 pg/mLâ^100 ng/mL (40 fMâ^400 pM) Range. Analytical Chemistry, 2005, 77, 7758-7762.	3.2	42
96	Tin microparticles for a lithium ion battery anode with enhanced cycling stability and efficiency derived from Se-doping. Journal of Materials Chemistry A, 2015, 3, 13500-13506.	5.2	42
97	Deactivation of bilirubin oxidase by a product of the reaction of urate and O2. Bioelectrochemistry, 2004, 65, 83-88.	2.4	41
98	Lithium Fluoride Coated Silicon Nanocolumns as Anodes for Lithium Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2020, 12, 18465-18472.	4.0	41
99	Elimination of electrooxidizable interferants in glucose electrodes. Journal of the American Chemical Society, 1991, 113, 9003-9004.	6.6	40
100	Electro-oxidation of glucose at an increased current density at a reducing potential. Chemical Communications, 2004, , 2116.	2.2	40
101	Bilirubin Oxidase Label for an Enzyme-Linked Affinity Assay with O2as Substrate in a Neutral pH NaCl Solution. Analytical Chemistry, 2004, 76, 2411-2414.	3.2	40
102	Electrostatic Control of the Electron-Transfer Enabling Binding of Recombinant Glucose Oxidase and Redox Polyelectrolytes. Journal of the American Chemical Society, 1994, 116, 3617-3618.	6.6	38
103	Scanning Electrochemical Microscopy. 44. Imaging of Horseradish Peroxidase Immobilized on Insulating Substrates. Analytical Chemistry, 2002, 74, 4007-4010.	3.2	36
104	Simple enzyme-amplified amperometric detection of a 38-base oligonucleotide at 20 pmol L -1 concentration in a 30-µL droplet. Analytical and Bioanalytical Chemistry, 2002, 374, 1050-1055.	1.9	35
105	Self-Assembled Cu–Sn–S Nanotubes with High (De)Lithiation Performance. ACS Nano, 2017, 11, 10347-10356.	7.3	35
106	A potentially insect-implantable trehalose electrooxidizing anode. Biosensors and Bioelectronics, 2006, 22, 678-684.	5.3	31
107	Effect of the Electrolyte on the Cycling Efficiency of Lithium-Limited Cells and their Morphology Studied Through in Situ Optical Imaging. ACS Applied Energy Materials, 2018, 1, 5830-5835.	2.5	30
108	Increasing the Efficiency of the Photocatalytic Oxidation of Organic Films on Aqueous Solutions by Reactively Coating the TiO2Photocatalyst with a Chlorinated Silicone. Journal of Physical Chemistry B, 1997, 101, 2621-2624.	1.2	29

#	Article	lF	Citations
109	Lithium Insertion/Deinsertion Characteristics of Nanostructured Amorphous Tantalum Oxide Thin Films. ChemElectroChem, 2014, 1, 158-164.	1.7	27
110	On-line glucose monitoring by using microdialysis sampling and amperometric detection based on ?wired? glucose oxidase in carbon paste. Mikrochimica Acta, 1995, 121, 31-40.	2.5	26
111	Sub-stoichiometric germanium sulfide thin-films as a high-rate lithium storage material. Journal of Materials Chemistry A, 2014, 2, 19011-19018.	5.2	26
112	Reduced-Graphene Oxide/Poly(acrylic acid) Aerogels as a Three-Dimensional Replacement for Metal-Foil Current Collectors in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 22641-22651.	4.0	26
113	Cu ₄ SnS ₄ -Rich Nanomaterials for Thin-Film Lithium Batteries with Enhanced Conversion Reaction. ACS Nano, 2019, 13, 10671-10681.	7.3	26
114	Statistics for Critical Clinical Decision Making Based on Readings of Pairs of Implanted Sensors. Analytical Chemistry, 1996, 68, 2845-2849.	3.2	25
115	Apoptosisâ€Inducing High [.] NO Concentrations Are Not Sustained Either in Nascent or in Developed Cancers. ChemMedChem, 2008, 3, 1493-1499.	1.6	25
116	Liquid Crystal Membranes for Serum-Compatible Diabetes Management-Assisting Subcutaneously Implanted Amperometric Glucose Sensors. Analytical Chemistry, 2008, 80, 1746-1755.	3.2	25
117	Fast lithium transport in PbTe for lithium-ion battery anodes. Journal of Materials Chemistry A, 2014, 2, 7238.	5.2	25
118	Mechanical and Electrochemical Characteristics of Composites of Wired Glucose Oxidase and Hydrophilic Graphite. Journal of the Electrochemical Society, 2000, 147, 2780.	1.3	24
119	Enhanced Electrochemical Performance of a Tinâ^antimony Alloy/Nâ€Doped Carbon Nanocomposite as a Sodiumâ€lon Battery Anode. ChemElectroChem, 2018, 5, 391-396.	1.7	23
120	Separator-free and concentrated LiNO ₃ electrolyte cells enable uniform lithium electrodeposition. Journal of Materials Chemistry A, 2020, 8, 3999-4006.	5. 2	23
121	Direkter Elektronenaustausch zwischen Graphitelektroden und einem adsorbierten Komplex aus Glucoseâ€Oxidase und einem Osâ€haltigen Redoxpolymer. Angewandte Chemie, 1990, 102, 109-111.	1.6	21
122	Mechanical and Chemical Protection of a Wired Enzyme Oxygen Cathode by a Cubic Phase Lyotropic Liquid Crystal. Analytical Chemistry, 2007, 79, 1173-1180.	3.2	21
123	Plugging metal connectors into enzymes. Nature Biotechnology, 2003, 21, 631-632.	9.4	20
124	Association of Type 2 Diabetes with Submicron Titanium Dioxide Crystals in the Pancreas. Chemical Research in Toxicology, 2018, 31, 506-509.	1.7	20
125	Facile Synthesis of a Tin Oxide-Carbon Composite Lithium-Ion Battery Anode with High Capacity Retention. ACS Applied Energy Materials, 2019, 2, 7244-7255.	2.5	20
126	A Stable Ag/Ceramic-Membrane/Ag2O Electroosmotic Pump Built with a Mesoporous Phosphosilicate-on-Silica Frit Membrane. Journal of the Electrochemical Society, 2011, 159, P14-P17.	1.3	19

#	Article	IF	Citations
127	Liâ€"Zn Overlayer to Facilitate Uniform Lithium Deposition for Lithium Metal Batteries. ACS Applied Materials & Company: Interfaces, 2021, 13, 9985-9993.	4.0	19
128	Deep Ultraviolet Photoresist Based on Tungsten Polyoxometalates and Poly(Vinyl Alcohol) for Bilayer Photolithography. Journal of the Electrochemical Society, 1992, 139, 786-793.	1.3	18
129	Lead Oxide Microparticles Coated by Ethylenediamine-Cross-Linked Graphene Oxide for Lithium Ion Battery Anodes. ACS Applied Energy Materials, 2019, 2, 3017-3020.	2.5	18
130	Irreversible and Reversible Deactivation of Bilirubin Oxidase by Urate. Electroanalysis, 2007, 19, 638-643.	1.5	17
131	Stabilization of a Bilirubin Oxidase-Wiring Redox Polymer by Quaternization and Characteristics of the Resulting O[sub 2] Cathode. Journal of the Electrochemical Society, 2009, 156, F87.	1.3	17
132	Lithiation and Delithiation of Lead Sulfide (PbS). Journal of the Electrochemical Society, 2015, 162, A1182-A1185.	1.3	16
133	Communication—Stages in the Dynamic Electrochemical Lithiation of Lead. Journal of the Electrochemical Society, 2016, 163, A1027-A1029.	1.3	15
134	Simple Microwaveâ€Assisted Synthesis of Delafossite CuFeO 2 as an Anode Material for Sodiumâ€Ion Batteries. ChemElectroChem, 2018, 5, 2419-2423.	1.7	15
135	Sulfur-Rich Molybdenum Sulfide as a Cathode Material for Room Temperature Sodium–Sulfur Batteries. ACS Applied Energy Materials, 2020, 3, 6121-6126.	2.5	15
136	Controlled Prelithiation of PbS to Pb/Li ₂ S for High Initial Coulombic Efficiency in Lithium Ion Batteries. Journal of the Electrochemical Society, 2019, 166, A1939-A1943.	1.3	11
137	Electrodeposition of the NaK Alloy with a Liquid Organic Electrolyte. ACS Applied Energy Materials, 2019, 2, 3009-3012.	2.5	11
138	APPLICATION OF PHOTOCATALYTIC HOLLOW GLASS MICROBEADS IN THE CLEANUP OF OIL SPILLS. International Oil Spill Conference Proceedings, 1993, 1993, 623-627.	0.1	11
139	Micropatterned Films of Tungsten Nuclei for Subsequent Metallization Formed of a Phosphotungstic Acidâ€Based Negative Resist. Journal of the Electrochemical Society, 1992, 139, 2889-2894.	1.3	10
140	A miniature, single use, skin-adhered, low-voltage, electroosmotic pumping-based subcutaneous infusion system. Drug Delivery and Translational Research, 2011, 1, 342-347.	3.0	10
141	Optimization Of "Wired―Enzyme O2-Electroreduction Catalyst Compositions by Scanning Electrochemical Microscopy. Angewandte Chemie, 2004, 116, 6515-6517.	1.6	9
142	Chemical Engineering Challenges and Investment Opportunities in Sustainable Energy. ChemSusChem, 2008, 1, 651-652.	3.6	9
143	Electrogenerated chemiluminescence in an electrodeposited redox hydrogel. Electrochemistry Communications, 2009, $11,599-602$.	2.3	9
144	Electrochemical Glucose Sensors and Their Application in Diabetes Management. Modern Aspects of Electrochemistry, 2013, , 121-187.	0.2	9

#	Article	IF	Citations
145	Compact Lithium-lon Battery Electrodes with Lightweight Reduced Graphene Oxide/Poly(Acrylic Acid) Current Collectors. ACS Applied Energy Materials, 2019, 2, 905-912.	2.5	9
146	†Wiring' of lactate oxidase within a low-redox potential electron-conducting hydrogel. , 1996, 9, 626-630.		8
147	Defining the Period of Recovery of the Glucose Concentration after Its Local Perturbation by the Implantation of a Miniature Sensor. Clinical Chemistry and Laboratory Medicine, 2002, 40, 786-9.	1.4	8
148	Obviating the need for nanocrystallites in the extended lithiation/de-lithiation of germanium. Journal of Materials Chemistry A, 2015, 3, 23442-23447.	5.2	7
149	A Stable Lead (II) Oxide-Carbon Composite Anode Candidate for Secondary Lithium Batteries. Journal of the Electrochemical Society, 2020, 167, 060509.	1.3	7
150	Potentially Pathogenic Calcium Oxalate Dihydrate and Titanium Dioxide Crystals in the Alzheimer's Disease Entorhinal Cortex. Journal of Alzheimer's Disease, 2020, 77, 547-550.	1.2	7
151	Linear Dependence of the Potential of "Wired―Glucose Oxidase Electrodes on the Concentration of Glucose. Journal of Physical Chemistry B, 1998, 102, 10057-10061.	1.2	5
152	An Oxidizable Anionâ€Excluding Polymerâ€Overlayer for Oxygen Electrodes. Electroanalysis, 2009, 21, 2709-2712.	1.5	5
153	The need for monitoring the actual nitric oxide concentration in tumors. Bioanalytical Reviews, 2009, 1, 3-6.	0.1	5
154	Electrochemistry and nitric oxide mass transport in cancer: why ingestion of sodium nitrite could be effective in treating vascularized tumors. Physical Chemistry Chemical Physics, 2010, 12, 9972.	1.3	5
155	Improvement of the sodiation/de-sodiation stability of Sn(C) by electrochemically inactive Na ₂ Se. RSC Advances, 2015, 5, 82012-82017.	1.7	5
156	A Simple Nonâ€Cassing, Direct Current, Electroâ€Osmotic Pump: Carbon Paper/Ceramic Frit/Carbon Paper. ChemElectroChem, 2014, 1, 868-870.	1.7	4
157	Crystals in the Substantia Nigra. ACS Chemical Neuroscience, 2019, 10, 3415-3418.	1.7	4
158	Sulfurâ€Rich Molybdenum Sulfide as an Anode Coating to Improve Performance of Lithium Metal Batteries. ChemElectroChem, 2020, 7, 222-228.	1.7	4
159	Detlev MÃ⅓ller's Discovery of Glucose Oxidase in 1925. Analytical Chemistry, 2021, 93, 7148-7149.	3.2	4
160	Electrical Communication between Glucose Oxidase and Electrodes Based on Poly(vinylimidazole) Complex of Bis(2,2′-bipyridine)-N,N′-dichloroosmium. ACS Symposium Series, 1994, , 307-317.	0.5	3
161	Hydrogen Peroxide Electrodes Based on Electrical Connection of Redox Centers. ACS Symposium Series, 1994, , 180-192.	0.5	3
162	Electron Conducting Adducts of Water-Soluble Redox Polyelectrolytes and Enzymes. Advances in Molecular and Cell Biology, 1996, , 391-409.	0.1	3

#	Article	IF	Citations
163	A Conversation with Adam Heller. Annual Review of Chemical and Biomolecular Engineering, 2015, 6, 1-12.	3.3	3
164	Enhancement of the Stability of Wired Quinoprotein Glucose Dehydrogenase Electrode. ACS Symposium Series, 1994, , 34-40.	0.5	2
165	Not All Research Is Equal. Angewandte Chemie - International Edition, 2014, 53, 2782-2783.	7.2	2
166	Nicht alle Forschung ist gleich. Angewandte Chemie, 2014, 126, 2822-2823.	1.6	2
167	Searching for new truths of nature and creating people-serving products through bio-electrochemistry: The brain interface. Current Opinion in Electrochemistry, 2018, 12, 3-4.	2.5	2
168	Obesity-Dependent Accumulation of Titanium in the Pancreas of Type 2 Diabetic Donors. Chemical Research in Toxicology, 2019, 32, 1351-1356.	1.7	2
169	The Need for Assaying Nitric Oxide in Cancer and Inflammation and Its Selective Assay Through Capture by Emeraldine Acid Polyradical. ECS Meeting Abstracts, 2010, , .	0.0	0
170	Intellectualâ€Integrity in Governmentâ€Funded Research. Israel Journal of Chemistry, 2021, 61, 6-10.	1.0	0