Jing Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7267000/publications.pdf

Version: 2024-02-01

516710 501196 43 848 16 28 citations h-index g-index papers 43 43 43 1071 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Selective conversion of furfural to cyclopentanone or cyclopentanol using different preparation methods of Cu–Co catalysts. Green Chemistry, 2015, 17, 1038-1046.	9.0	168
2	Cysteine-Aminoethylation-Assisted Chemical Ubiquitination of Recombinant Histones. Journal of the American Chemical Society, 2019, 141, 3654-3663.	13.7	62
3	Aerobic oxidative esterification of 5-hydroxymethylfurfural to dimethyl furan-2,5-dicarboxylate by using homogeneous and heterogeneous PdCoBi/C catalysts under atmospheric oxygen. Green Chemistry, 2018, 20, 3050-3058.	9.0	58
4	Mechanistic Origin of Regioselectivity in Nickel-Catalyzed Olefin Hydroheteroarylation through C–H Activation. Organometallics, 2012, 31, 4356-4366.	2.3	56
5	A Theoretical Study on Câ^'COOH Homolytic Bond Dissociation Enthalpies. Journal of Physical Chemistry A, 2010, 114, 6263-6272.	2.5	42
6	Mechanism and Origin of the Stereoselectivity in the Palladiumâ€Catalyzed <i>trans</i> Hydroboration of Internal 1,3â€Enynes with an Azaborineâ€Based Phosphine Ligand. Chemistry - A European Journal, 2018, 24, 178-186.	3.3	35
7	Chemical synthesis of a cyclotide via intramolecular cyclization of peptide O-esters. Science China Chemistry, 2012, 55, 64-69.	8.2	32
8	Selective modification of natural nucleophilic residues in peptides and proteins using arylpalladium complexes. Organic Chemistry Frontiers, 2018, 5, 3186-3193.	4.5	30
9	An activity-based probe developed by a sequential dehydroalanine formation strategy targets HECT E3 ubiquitin ligases. Chemical Communications, 2019, 55, 7109-7112.	4.1	25
10	Diaminodiacid-based solid-phase synthesis of all-hydrocarbon stapled \hat{l}_{\pm} -helical peptides. Organic and Biomolecular Chemistry, 2015, 13, 6286-6290.	2.8	24
11	An E1â€Catalyzed Chemoenzymatic Strategy to Isopeptideâ€ <i>N</i> à€Ethylated Deubiquitylaseâ€Resistant Ubiquitin Probes. Angewandte Chemie - International Edition, 2020, 59, 13496-13501.	13.8	23
12	Synthesis of Peptide Disulfide-Bond Mimics by Using Fully Orthogonally Protected Diaminodiacids. Organic Letters, 2018, 20, 6074-6078.	4.6	20
13	Chemical synthesis and biological activity of peptides incorporating an ether bridge as a surrogate for a disulfide bond. Chemical Science, 2020, 11, 7927-7932.	7.4	20
14	Chemical Synthesis of Natural Polyubiquitin Chains through Auxiliary-Mediated Ligation of an Expressed Ubiquitin Isomer. Organic Letters, 2018, 20, 329-332.	4.6	19
15	A computational study of CX (X = H, C, F, Cl) bond dissociation enthalpies (BDEs) in polyhalogenated methanes and ethanes. Journal of Physical Organic Chemistry, 2011, 24, 65-73.	1.9	18
16	Engineered fluorescence tags for in vivo protein labelling. RSC Advances, 2014, 4, 7235-7245.	3.6	18
17	Dmab/ivDde protected diaminodiacids for solid-phase synthesis of peptide disulfide-bond mimics. Tetrahedron Letters, 2017, 58, 1677-1680.	1.4	17
18	Hydride Dissociation Energies of Six-Membered Heterocyclic Organic Hydrides Predicted by ONIOM-G4Method. Journal of Chemical Information and Modeling, 2012, 52, 63-75.	5.4	16

#	Article	IF	CITATIONS
19	Mechanism for the enhanced reactivity of 4-mercaptoprolyl thioesters in native chemical ligation. RSC Advances, 2016, 6, 68312-68321.	3.6	15
20	Design of new neutral organic superâ€electron donors: a theoretical study. Journal of Physical Organic Chemistry, 2010, 23, 75-83.	1.9	14
21	Photocaging of Activityâ€Based Ubiquitin Probes via a Câ€Terminal Backbone Modification Strategy. Angewandte Chemie - International Edition, 2022, 61, .	13.8	14
22	Efficient synthesis of hydrocarbon-bridged diaminodiacids through nickel-catalyzed reductive cross-coupling. Tetrahedron Letters, 2017, 58, 3970-3973.	1.4	12
23	Mechanistic Study of Copper-Catalyzed Decarboxylative C–N Cross-Coupling with Hypervalent Iodine Oxidant. Organometallics, 2017, 36, 2081-2087.	2.3	11
24	Efficient semi-synthesis of ubiquitin-7-amino-4-methylcoumarin. Tetrahedron, 2018, 74, 3931-3935.	1.9	10
25	Robust synthesis of C-terminal cysteine-containing peptide acids through a peptide hydrazide-based strategy. Organic and Biomolecular Chemistry, 2019, 17, 5698-5702.	2.8	10
26	A mechanistic study on the regioselective Ni-catalyzed methylation–alkenylation of alkyne with AlMe ₃ and allylic alcohol. Organic Chemistry Frontiers, 2021, 9, 163-172.	4.5	9
27	Heterocyclic analogs of phenol as novel potential antioxidants. Journal of Physical Organic Chemistry, 2009, 22, 1038-1047.	1.9	7
28	Efficient chemical synthesis for the analogue of ubiquitin-based probe Ub–AMC with native bioactivity. RSC Advances, 2016, 6, 47926-47930.	3.6	7
29	A mechanistic study on Cu(i) catalyzed carboxylation of the C–F bond with CO2: a DFT study. Organic and Biomolecular Chemistry, 2020, 18, 9065-9071.	2.8	7
30	Non-reducible disulfide bond replacement implies that disulfide exchange is not required for hepcidin–ferroportin interaction. Chemical Communications, 2019, 55, 2821-2824.	4.1	6
31	One-Pot Synthesis of a Bis-Thio-Acetone Linked Ubiquitinated Histones Using 1,3-Dibromoacetone. Journal of Organic Chemistry, 2020, 85, 15631-15637.	3.2	6
32	Chemical Synthesis of Sixâ€Atom Thioether Bridged Diaminodiacid for Solidâ€Phase Synthesis of Peptide Disulfide Bond Mimics. ChemistrySelect, 2020, 5, 1359-1363.	1.5	6
33	Semisynthesis of Ubiquitin and SUMO-Rhodamine 110-Glycine through Aminolysis of Boc-Protected Thioester Counterparts. Journal of Organic Chemistry, 2019, 84, 14861-14867.	3.2	5
34	Efficient Semiâ€Synthesis of Atypical Ubiquitin Chains and Ubiquitinâ€Based Probes Forged by Thioether Isopeptide Bonds. Chemistry - A European Journal, 2019, 25, 16668-16675.	3.3	5
35	Chemical synthesis of disulfide surrogate peptides by using beta-carbon dimethyl modified diaminodiacids. Organic and Biomolecular Chemistry, 2021, 19, 9021-9025.	2.8	5
36	Chemical Synthesis of diSUMO Photoaffinity Probes for the Identification of PolySUMO Chain-Specific Interacting Proteins. CCS Chemistry, 2021, 3, 1157-1168.	7.8	4

#	Article	IF	Citations
37	Photocaging of Activityâ€Based Ubiquitin Probes via a Câ€Terminal Backbone Modification Strategy. Angewandte Chemie, 2022, 134, .	2.0	4
38	An E1â€Catalyzed Chemoenzymatic Strategy to Isopeptideâ€ <i>N</i> à€Ethylated Deubiquitylaseâ€Resistant Ubiquitin Probes. Angewandte Chemie, 2020, 132, 13598-13603.	2.0	3
39	Desulfurization Mechanism of Cysteine in Synthesis of Polypeptides. Chinese Journal of Chemical Physics, 2015, 28, 269-276.	1.3	2
40	Acid-sensitive auxiliary assisted atypical diubiquitin synthesis exploiting thiol-ene coupling. Tetrahedron Letters, 2019, 60, 151123.	1.4	2
41	Density Functional Theory Calculations on Ni—Ligand Bond Dissociation Enthalpies. Chinese Journal of Chemical Physics, 2014, 27, 640-646.	1.3	1
42	QUANTUM-CHEMICAL PREDICTION OF FORMATION ENTHALPY OF CYCLOALKANE. Journal of Theoretical and Computational Chemistry, 2010, 09, 155-166.	1.8	0
43	Efficient synthesis of terminal-diazirine-based histone peptide probes. Tetrahedron Letters, 2022, , 153878.	1.4	0